119 research outputs found

    Magnetron sputter deposition of Ta2O5-SiO2 quantized nanolaminates

    Get PDF
    Quantized nanolaminates are a type of optical metamaterials, which were discovered only recently. Their feasibility was demonstrated by atomic layer deposition and ion beam sputtering so far. In this paper, we will report on the successful magnetron sputter deposition of quantized nanolaminates based on Ta2O5-SiO2. We will describe the deposition process, show results and material characterization of films deposited in a very wide parameter range. Furthermore, we will show how quantized nanolaminates deposited by magnetron sputtering were used in optical interference coatings such as antireflection and mirror coatings

    Potential implications of differential preservation of testate amoeba shells for paleoenvironmental reconstruction in peatlands

    Get PDF
    Testate amoebae are now commonly used in paleoenvironmental studies but little is known of their taphonomy. There is some experimental evidence for differential preservation of some testate amoeba shell types over others, but it is unclear what, if any impact this has on palaeoenvironmental reconstruction. To investigate this issue we looked at palaeoecological evidence for the preservation of different shell types. We then investigated the possible impact of selective preservation on quantitative palaeoenvironmental inference. We first used existing palaeoecological data sets to assess the vertical patterns of relative abundance in four testate amoeba shell types: (1) shells made of secreted biosilica plates (idiosomes, e.g. Euglypha), (2) idiosomes with thick organic coating (Assulina), (3) proteinaceous shells (e.g. Hyalosphenia), (4) shells built from recycled organic or mineral particles (xenosomes) (e.g. Difflugia, Centropyxis). In three diagrams a clear pattern of decay was only observed for the idiosome type. In order to assess the implications of differential preservation of testate amoeba taxa for paleoenvironmental reconstruction we then carried out simulations using three existing transfer functions and a wide range of scenarios, downweighting different test categories to represent the impact of selective test decomposition. Simulation results showed that downweighting generally reduced overall model performance. However downweighting a shell type only produced a consistent directional bias in inferred water table depth where that shell type is both dominant and shows a clear preference along the ecological gradient. Applying a scenario derived from previous experimental work did not lead to significant difference in inferred water table. Our results show that differential shell preservation has little impact on paleohydrological reconstruction from Sphagnum-dominated peatlands. By contrast, for the minerotrophic peatlands data-set loss of idiosome tests leads to consistent underestimation of water table depth. However there are few studies from fens and it is possible that idiosome tests are not always dominant, and/or that differential decomposition is less marked than in Sphagnum peatlands. Further work is clearly needed to assess the potential of testate amoebae for paleoecological studies of minerotrophic peatlands

    DISC1 genetics, biology and psychiatric illness

    Get PDF
    Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain

    Altered Disrupted-in-Schizophrenia-1 function affects the development of cortical parvalbumin interneurons by an indirect mechanism.

    Get PDF
    <div><p><i>Disrupted-in-Schizophrenia-1 (DISC1)</i> gene has been linked to schizophrenia and related major mental illness. Mouse Disc1 has been implicated in brain development, mainly in the proliferation, differentiation, lamination, neurite outgrowth and synapse formation and maintenance of cortical excitatory neurons. Here, the effects of two loss-of-function point mutations in the mouse <i>Disc1</i> sequence (Q31L and L100P) on cortical inhibitory interneurons were investigated. None of the mutations affected the overall number of interneurons. However, the 100P, but not the 31L, mutation resulted in a significant decrease in the numbers of interneurons expressing parvalbumin mRNA and protein across the sensory cortex. To investigate role of Disc1 in regulation of parvalbumin expression, mouse wild-type Disc-1 or the 100P mutant form were electroporated <i>in utero</i> into cortical excitatory neurons. Overexpression of wild-type Disc1 in these cells caused increased densities of parvalbumin-expressing interneurons in the electroporated area and in areas connected with it, whereas expression of Disc1-100P did not. We conclude that the 100P mutation prevents expression of parvalbumin by a normally sized cohort of interneurons and that altering Disc1 function in cortical excitatory neurons indirectly affects parvalbumin expression by cortical interneurons, perhaps as a result of altered functional input from the excitatory neurons.</p></div

    Begreifen der Integralrechnung:Konzeption und empirische Erprobung montessori-pÀdagogischer Lernmaterialien zur Förderung vielfÀltiger Grundvorstellungen : Ein entwicklungsorientiertes Forschungsprojekt zum Integralbegriff

    Full text link
    Ein zentrales Ziel des Mathematikunterrichts besteht darin, dass die SchĂŒlerinnen und SchĂŒler tragfĂ€hige Grundvorstellungen zu den mathematischen Begriffen entwickeln. Die Frage, wie Lehr-Lern-Arrangements zur Förderung von Grundvorstellungen gestaltet werden können, ist im Bereich der Analysis allerdings noch weitgehend unerforscht. Die vorliegende Arbeit setzt an dieser ForschungslĂŒcke an und exploriert, wie der Aufbau vielseitiger Grundvorstellungen zum Integralbegriff angeregt werden kann. Die Kernidee beim Aufbau von Grundvorstellungen ist, dass konkrete Handlungen an geeigneten Lernmaterialien in gedankliche Operationen umgewandelt werden. An der Tagesordnung sind solche haptischen Lernformen in den inklusiven Lernsettings von Montessori-Schulen. Im vorliegenden Entwicklungsforschungsprojekt wurden Mathematik-Didaktik und Montessori-PĂ€dagogik aus diesem Grund mit einer hohen Synthesekraft zusammengefĂŒhrt: Auf der Grundlage einer theoretischen Bedarfsanalyse wurden vier innovative montessorische Lernmaterialien zur Integralrechnung entwickelt und gefertigt; im Zuge einer qualitativen Feldstudie wurden diese zum einen in der montessorischen Primarstufe, zum anderen in der Sekundarstufe II empirisch erprobt. Die detaillierten Einzelfallanalysen zeigen, dass materialgeleitete Lernformen Vorstellungsentwicklungsprozesse initiieren und sich auffallend positiv auf die Emotionen von SchĂŒlerinnen und SchĂŒlern auswirken können. Insgesamt ergibt sich ein einsichtsvolles Bild eines konkreten Förderkonzepts, das sich durch seine unmittelbare Übertragbarkeit in die Bildungspraxis auszeichnet. Die DiversitĂ€t der Lernenden wird dabei in besonderer Weise berĂŒcksichtigt

    Freizeit in raeumlicher Isolation Prognosen und Analysen zum Freizeit- und Fremdenverkehr der Bevoelkerung von Berlin (West)

    No full text
    Bibliothek Weltwirtschaft Kiel B 223431 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Science Advances

    No full text
    Interregional neuronal communication is pivotal to instructing and adjusting cortical circuit assembly. Subcortical neuromodulatory systems project long-range axons to the cortex and affect cortical processing. However, their roles and signaling mechanisms in cortical wiring remain poorly understood. Here, we explored whether and how the cholinergic system regulates inhibitory axonal ramification of neocortical chandelier cells (ChCs), which control spike generation by innervating axon initial segments of pyramidal neurons. We found that acetylcholine (ACh) signaling through nicotinic ACh receptors (nAChRs) and downstream T-type voltage-dependent calcium (Ca2+) channels cell-autonomously controls axonal arborization in developing ChCs through regulating filopodia initiation. This signaling axis shapes the basal Ca2+ level range in varicosities where filopodia originate. Furthermore, the normal development of ChC axonal arbors requires proper levels of activity in subcortical cholinergic neurons. Thus, the cholinergic system regulates inhibitory network arborization in the developing neocortex and may tune cortical circuit properties depending on early-life experiences

    Industrietourismus

    No full text

    Journal of Neuroscience

    No full text
    Different cortical regions processing distinct information, such as the hippocampus and the neocortex, share common cellular components and circuit motifs but form unique networks by modifying these cardinal units. Cortical circuits include diverse types of GABAergic interneurons (INs) that shape activity of excitatory principal neurons (PNs). Canonical IN types conserved across distinct cortical regions have been defined by their morphological, electrophysiological, and neurochemical properties. However, it remains largely unknown whether canonical IN types undergo specific modifications in distinct cortical regions and display “regional variants”. It is also poorly understood whether such phenotypic variations are shaped by early specification or regional cellular environment. The chandelier cell (ChC) is a highly stereotyped IN type, which innervates axon initial segments of PNs, and thus serves as a good model to address this issue. Here we show that Cadherin-6 (Cdh6), a homophilic cell adhesion molecule, is a reliable marker of ChCs and Cdh6-CreER mice (both sexes) provide genetic access to hippocampal ChCs (h-ChCs). We demonstrate that compared to neocortical ChCs (nc-ChCs), h-ChCs cover twice as much area and innervate twice as many PNs. Interestingly, a subclass of h-ChCs exhibits calretinin (CR) expression, which is not found in nc-ChCs. Furthermore, we find that h-ChCs appear to be born earlier than nc-ChCs. Surprisingly, despite the difference in temporal origins, ChCs display host region-dependent axonal/synaptic organization and CR expression when heterotopically transplanted. These results suggest that local cellular environment plays a critical role in shaping terminal phenotypes of regional IN variants in the hippocampus and the neocortex. SIGNIFICANCE STATEMENT Canonical IN types conserved across distinct cortical regions such as the hippocampus and the neocortex are defined by morphology, physiology, and gene expression. However, it remains unknown whether they display phenotypic variations in different cortical regions. In addition, it is unclear whether terminal phenotypes of regional IN variants belonging to a canonical IN type are determined intrinsically or extrinsically. Our results provide evidence of striking differences in axonal/synaptic organization and CR expression between h-ChCs and nc-ChCs. They also reveal that local cellular environment in distinct cortical regions regulates these terminal phenotypes. Thus, our study suggests that local cortical environment shapes the phenotypes of regional IN variants, which may be required for unique circuit operations in distinct cortical regions
    • 

    corecore