1,046 research outputs found

    Novel Techniques for Constraining Neutron-Capture Rates Relevant for r-Process Heavy-Element Nucleosynthesis

    Full text link
    The rapid-neutron capture process (rr process) is identified as the producer of about 50\% of elements heavier than iron. This process requires an astrophysical environment with an extremely high neutron flux over a short amount of time (∼\sim seconds), creating very neutron-rich nuclei that are subsequently transformed to stable nuclei via β−\beta^- decay. One key ingredient to large-scale rr-process reaction networks is radiative neutron-capture (n,γn,\gamma) rates, for which there exist virtually no data for extremely neutron-rich nuclei involved in the rr process. Due to the current status of nuclear-reaction theory and our poor understanding of basic nuclear properties such as level densities and average γ\gamma-decay strengths, theoretically estimated (n,γn,\gamma) rates may vary by orders of magnitude and represent a major source of uncertainty in any nuclear-reaction network calculation of rr-process abundances. In this review, we discuss new approaches to provide information on neutron-capture cross sections and reaction rates relevant to the rr process. In particular, we focus on indirect, experimental techniques to measure radiative neutron-capture rates. While direct measurements are not available at present, but could possibly be realized in the future, the indirect approaches present a first step towards constraining neutron-capture rates of importance to the rr process.Comment: 62 pages, 24 figures, accepted for publication in Progress in Particle and Nuclear Physic

    Geodesic motions versus hydrodynamic flows in a gravitating perfect fluid: Dynamical equivalence and consequences

    Full text link
    Stimulated by the methods applied for the observational determination of masses in the central regions of the AGNs, we examine the conditions under which, in the interior of a gravitating perfect fluid source, the geodesic motions and the general relativistic hydrodynamic flows are dynamically equivalent to each other. Dynamical equivalence rests on the functional similarity between the corresponding (covariantly expressed) differential equations of motion and is obtained by conformal transformations. In this case, the spaces of the solutions of these two kinds of motion are isomorphic. In other words, given a solution to the problem "hydrodynamic flow in a perfect fluid", one can always construct a solution formally equivalent to the problem "geodesic motion of a fluid element" and vice versa. Accordingly, we show that, the observationally determined nuclear mass of the AGNs is being overestimated with respect to the real, physical one. We evaluate the corresponding mass-excess and show that it is not always negligible with respect to the mass ofthe central dark object, while, under circumstances, can be even larger than the rest-mass of the circumnuclear gas involved.Comment: LaTeX file, 22 page

    Performance of three-photon PET imaging: Monte Carlo simulations

    Full text link
    We have recently introduced the idea of making use of three-photon positron annihilations in positron emission tomography. In this paper the basic characteristics of the three-gamma imaging in PET are studied by means of Monte Carlo simulations and analytical computations. Two typical configurations of human and small animal scanners are considered. Three-photon imaging requires high energy resolution detectors. Parameters currently attainable by CdZnTe semiconductor detectors, the technology of choice for the future development of radiation imaging, are assumed. Spatial resolution is calculated as a function of detector energy resolution and size, position in the field of view, scanner size, and the energies of the three gamma annihilation photons. Possible ways to improve the spatial resolution obtained for nominal parameters: 1.5 cm and 3.2 mm FWHM for human and small animal scanners, respectively, are indicated. Counting rates of true and random three-photon events for typical human and small animal scanning configurations are assessed. A simple formula for minimum size of lesions detectable in the three-gamma based images is derived. Depending on the contrast and total number of registered counts, lesions of a few mm size for human and sub mm for small animal scanners can be detected

    Joint modeling of ChIP-seq data via a Markov random field model

    Get PDF
    Chromatin ImmunoPrecipitation-sequencing (ChIP-seq) experiments have now become routine in biology for the detection of protein-binding sites. In this paper, we present a Markov random field model for the joint analysis of multiple ChIP-seq experiments. The proposed model naturally accounts for spatial dependencies in the data, by assuming first-order Markov dependence and, for the large proportion of zero counts, by using zero-inflated mixture distributions. In contrast to all other available implementations, the model allows for the joint modeling of multiple experiments, by incorporating key aspects of the experimental design. In particular, the model uses the information about replicates and about the different antibodies used in the experiments. An extensive simulation study shows a lower false non-discovery rate for the proposed method, compared with existing methods, at the same false discovery rate. Finally, we present an analysis on real data for the detection of histone modifications of two chromatin modifiers from eight ChIP-seq experiments, including technical replicates with different IP efficiencies

    Meat outside the freezer: Drying, smoking, salting and sealing meat in fat at an Epipalaeolithic megasite in eastern Jordan

    Get PDF
    Even though pivotal for understanding many aspects of human behaviour, preservation and storage of animal resources has not received great attention from archaeologists. One could argue that the main problem lies in the difficulties of demonstrating meat storage archaeologically due to the lack of direct evidence. This paper represents an attempt to refine zooarchaeological methods for the recognition of meat preservation and storage at prehistoric sites. Drawing on the faunal assemblage from Kharaneh IV, an Early/Middle Epipalaeolithic aggregation site in eastern Jordan, this study demonstrates that a combination of taphonomic and contextual analyses alongside ethnographic information may indeed lead archaeologists to insights not directly available from the archaeological record. The empirical evidence presented here contributes to the archaeological visibility of meat preservation and storage, providing a clearer concept of the nature of these practices in pre-agricultural societies

    Exploiting neutron-rich radioactive ion beams to constrain the symmetry energy

    Get PDF
    The Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet were used to measure the free neutrons and heavy charged particles from the radioactive ion beam induced 32Mg + 9Be reaction. The fragmentation reaction was simulated with the Constrained Molecular Dynamics model(CoMD), which demonstrated that the of the heavy fragments and free neutron multiplicities were observables sensitive to the density dependence of the symmetry energy at sub-saturation densities. Through comparison of these simulations with the experimental data constraints on the density dependence of the symmetry energy were extracted. The advantage of radioactive ion beams as a probe of the symmetry energy is demonstrated through examination of CoMD calculations for stable and radioactive beam induced reactions
    • …
    corecore