289 research outputs found

    Hybrid MHD/PIC simulation of a metallic gas-puff z pinch implosion

    Full text link
    We present the hybrid MHD/PIC simulations of the time evolution of a bismuth metallic gas-puff z pinch in external axial magnetic field (AMF). Recent experiments with IMRI-5 generator (450 kA, 450 ns) [1] show the certain effect of an axial magnetic field on radiation energy produced during z pinch implosion. In order to perform the numerical simulation of gas puff z pinch a hybrid model was developed. The hybrid model treats the electrons as a massless fluid and ions as macroparticles. The macroparticle dynamic is calculated with the use of PIC method. Ion-ion Coulomb collision is considered with the use of MC method. The radiation transfer of bismuth plasma was accounted in the framework of P1 method. The interelectrode gap pumping by plasma of 8 μs 80 kA bismuth arc with the following plasma implosion by 450 kA / 450 ns current pulse in different external AMF was modelled. The obtained results are in a reasonable agreement with the experimental results. © Published under licence by IOP Publishing Ltd.The work was supported by Russian Science Foundation (project No. 16-19-10142)

    First Stages of Wet Wooden Ice-House Conservation Dated to the First Half of the 18th Century

    Get PDF
    In July 2019, during the restoration of the building of the First Cadet Corps (the former mansion of Aleksandr D. Menshikov), fragments of two structures that differ in the degree of preservation – a cellar and an ice-house (lednik), dating back to the first half of the 18th century, were discovered. The lednik is a traditional building for the North-Western region of Russia and a rare wooden architectural object for St. Petersburg of that time. In order to prepare the construction for dismantling and to plan its further restoration, preliminary studies were conducted. It was found that details from other wooden objects, probably ships and barges, were used for this construction. The physical parameters of the wood of the structural parts varied. Most parts of the lednik are waterlogged. Based on the results of the research, a plan was worked out for the preservation of this unique historical architectural object

    Implementation of double-pulse laser control in optical Kerr effect spectroscopy

    Get PDF
    Two-pulse control of time-dependent anisotropy in liquid CCl4 and CHCl3 at room temperature is implemented using femtosecond polarisation spectroscopy. Non-resonant excitation was enhanced by means of the double-pulse pump-probe technique. It is shown that by varying the delay between the exciting pulses and their relative intensity, selection of contributions of individual intramolecular modes into the recorded signal is achieved. The molecular responses were detected using the time-resolved optically heterodyne-detected optical-Kerr-effect technique. © Published under licence by IOP Publishing Ltd

    Femtosecond laser control of intramolecular vibrations in a liquid

    Get PDF
    Optical control of coherent intramolecular oscillations in chloroform CHCl3 and dimethyl sulfoxide (CH 3) 3SO is attained experimentally under normal conditions by means of femtosecond polarization spectroscopy. Nonresonant excitation of the medium is accomplished by a sequence of two linearly polarized laser pulses. The state of the medium is probed by the third pulse via the optical Kerr effect. We show that control over the vibrational dynamics of molecules on a sub-picosecond scale can be achieved by varying the delay between the excitation pulses and their relative intensity. © Allerton Press, Inc., 2012

    第2章 イギリスにおける医療政策決定過程

    Get PDF
    Two-pulse control of time-dependent anisotropy in liquid CCl4 and CHCl3 at room temperature is implemented using femtosecond polarisation spectroscopy. Non-resonant excitation was enhanced by means of the double-pulse pump-probe technique. It is shown that by varying the delay between the exciting pulses and their relative intensity, selection of contributions of individual intramolecular modes into the recorded signal is achieved. The molecular responses were detected using the time-resolved optically heterodyne-detected optical-Kerr-effect technique. © Published under licence by IOP Publishing Ltd

    Ultrafast spectroscopy of CdS/CdSe quantum dots

    Get PDF
    © 2017, Allerton Press, Inc. Results from the nonresonance spectroscopy of CdS/CdSe quantum dots (composites of CdSe–CdS nanoparticles (core–shell)) are presented. The nonlinear optical properties of CdS/CdSe QDs in PMMA are studied with fs pulses at 1053 nm using the transient lens technique. QDs generate rapidly oscillating signals with amplitude rise times of around 200 fs and decay times of around 500 fs, while pure PMMA polymer only generates an oscillating signal whose envelope coincides with its autocorrelation function

    On Hybrid Type of Cathode Attachment in High Current Vacuum Arcs

    Full text link
    This paper discusses the issues of a possible change of the type of cathode attachment of high-current vacuum arcs (HCVA) with an average cathode current density of more than 105 A/cm2. This type of HCVA is used as pumping plasma gun in experiments with plasma puff z-pinches. These experiments showed that the measured linear mass of the HCVA plasma jet is much higher (by a factor of 10 or more) than the expected mass, which can be obtained from the assumption that cathode attachment occurs only through a multitude of cathode spots emitting supersonic plasma jets. It is shown that in HCVA of the type under consideration, at some time instant there are two types of cathode attachments - cathode spots and thermionic erosion attachment (TEA). It can be said that HCVA of this type have a hybrid cathodic attachment. Unlike cathode spots, TEA produces a subsonic plasma flow, which contributes to an increase in the linear mass of the HCVA plasma jet. © 2021 Institute of Physics Publishing. All rights reserved

    Ultrafast Below-Band-Gap Laser Pulse Induced Relaxations in CdS Crystal

    Get PDF
    © Published under licence by IOP Publishing Ltd. We report an experimental study of the intra- and interband transitions in bulk CdS crystal induced by a strong below-band-edge femtosecond laser pulse. An additional peak was observed in spectrally resolved four-wave mixing signal shifted to lower energy and positive time delay

    Radiogenic Lead with Dominant Content of 208 Pb: New Coolant and Neutron Moderator for Innovative Nuclear Facilities

    Get PDF
    As a rule materials of small atomic weight (light and heavy water, graphite, and so on) are used as neutron moderators and reflectors. A new very heavy atomic weight moderator is proposed-radiogenic lead consisting mainly of isotope 208 Pb. It is characterized by extremely low neutron radiative capture cross-section (0.23 mbarn for thermal neutrons, i.e., less than that for graphite and deuterium) and highest albedo of thermal neutrons. It is evaluated that the use of radiogenic lead makes it possible to slow down the chain fission reaction on prompt neutrons in a fast reactor. This can increase safety of the fast reactors and reduce as well requirements pertaining to the fuel fabrication technology. Radiogenic lead with high 208 Pb content as a liquid-metal coolant of fast reactors helps to achieve a favorable (negative) reactivity coefficient on coolant temperature. It is noteworthy that radiogenic lead with high 208 Pb content may be extracted from thorium (as well as thorium-uranium) ores without isotope separation. This has been confirmed experimentally by the investigations performed at San Paulo University, Brazil

    Withdrawal of inhaled corticosteroids in COPD patients: rationale and algorithms

    Get PDF
    COPD; Treatment algorithm; Guideline adherenceEPOC; Algoritmo de tratamiento; Adherencia a la guía clínicaMPOC; Algoritme de tractament; Adherència a la guia clínicaObservational studies indicate that overutilization of inhaled corticosteroids (ICS) is common in patients with chronic obstructive pulmonary disease (COPD). Overprescription and the high risk of serious ICS-related adverse events make withdrawal of this treatment necessary in patients for whom the treatment-related risks outweigh the expected benefits. Elaboration of an optimal, universal, user-friendly algorithm for withdrawal of ICS therapy has been identified as an important clinical need. This article reviews the available evidence on the efficacy, risks, and indications of ICS in COPD, as well as the benefits of ICS treatment withdrawal in patients for whom its use is not recommended by current guidelines. After discussing proposed approaches to ICS withdrawal published by professional associations and individual authors, we present a new algorithm developed by consensus of an international group of experts in the field of COPD. This relatively simple algorithm is based on consideration and integrated assessment of the most relevant factors (markers) influencing decision-making, such a history of exacerbations, peripheral blood eosinophil count, presence of infection, and risk of community-acquired pneumonia
    corecore