9 research outputs found

    Mechanical properties and durability assessment of nylon fiber reinforced self-compacting concrete

    Get PDF
    [EN] The higher paste volume in Self Compacting Concrete (SCC) makes it susceptible to have a higher creep coefficient and cracking and has brittle nature. This brittle nature of concrete is unacceptable for any construction industry. The addition of fibers is one of the most prevalent methods to enhance the ductile and tensile behavior of concrete. Fibers reduce the cracking phenomena and improve the energy absorption capacity of the structure. Conversely, the addition of fibers has a negative impact on the workability of fresh concrete. In this research work, a detailed investigation of the influence of Nylon fibers (NFs) on fresh properties, durability, and mechanical properties of SCC was carried out. NFs were added into concrete mixes in a proportion of 0.5%, 1%, 1.5%, and 2% by weight of cement to achieve the research objectives. Durability assessment of modified SCC having Nylon fibers was performed using water absorption, permeability, carbonation resistance, and acid attack resistant. Mechanical tests (compressive and tensile) were conducted for modified as well as control mix. Test results indicate that the passing and filling ability decreased while segregation and bleeding resistance increased with NFs. Furthermore, test results showed a significant increase in strength up to 1.5% addition of nylon fibers and then strength decreases gradually. Durability parameters were significantly improved with the incorporation of NFs relative to the control mix. Overall, this study demonstrated the potential of using nylon fibers in self-compacting concrete with improved durability and mechanical properties.SIThe author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through group research program under grant number RGP. 1/100/42 and Taif University Researchers Supporting Project (number TURSP- 2020/276), Taif University, Taif, Saudi Arabi

    Effect of Waste Basalt Fines and Recycled Concrete Components on Mechanical, Water Absorption, and Microstructure Characteristics of Concrete

    No full text
    In this paper, the recycled fine aggregates and powders produced from crushing old basaltic concrete and natural basalt were used to produce new concrete. The sand was partially replaced by two types of recycled wastes at five percentages: 0%, 20%, 40%, 60%, and 80%. The cement was partially replaced by recycled powders and silica fume (SF) at four percentages: 0, 5%, 10%, and 20%. The concrete strengths and water absorption were obtained at several curing ages. The obtained results emphasized the positive effects of increasing the curing time on enhancing the concrete properties, regardless of the types or the waste sources. Moreover, the recycled powders retarded the hydration reaction. In addition, the recycled fine aggregates and powders could achieve about 99.5% and 99.3% of the ordinary concrete strength and enhance the tensile strength. Furthermore, the mix containing 40% of recycled fine concrete aggregate diffused the highest contents of both calcium and silicate, which led to enhancing the interfacial transition zone (ITZ) and concrete properties, compared to the other tested mixes. Finally, the water absorption of all tested concrete mixes decreased with an increase in the curing age, while the mixes integrating 10% and 20% of SF experienced the lowest values of water absorption

    Flexural Response and Failure Analysis of Solid and Hollow Core Concrete Beams with Additional Opening at Different Locations

    No full text
    It is essential to make openings in structural concrete elements to accommodate mechanical and electrical needs. To study the effect of these openings on the performance of reinforced concrete (RC) elements, a numerical investigation was performed and validated using previous experimental work. The effect of the position and dimension of the opening and the beam length on the response of the beams, loads capacities, and failure modes was studied. The simulated RC beams showed different responses, loads capacities, and failure modes depending on the position and dimension of the opening. The transversal near support opening (TNSH) and longitudinal holes (LH) showed lower effects on the load capacities of the beams than the transversal near center opening (TNCH). The supreme reduction percentages of the load capacity (µu%) for beams with TNCH and TNSH were 37.21% and 30.34%, respectively (opening size = 150 × 150 mm2). In addition, the maximum µu% for beam with LH was 17.82% (opening size = 25% of the beam size). The TNSH with a width of less than 18.18% of the beam shear span (550 mm) had trivial effects on the beam’s load capacities (the maximum µu% = 1.26%). Although the beams with combined LH and TNCH or LH and TNSH showed different failure modes, they experienced nearly the same load reductions. Moreover, the length of the beam (solid or hollow) had a great effect on its failure mode and load capacity. Finally, equations were proposed and validated to calculate the yield load and post-cracking deflection for the concrete beams with a longitudinal opening

    Effect of Shear and Pure Bending Spans on the Behaviour of Steel Beams with Corrugated Webs

    No full text
    The shear span-to-effective depth ratio is known to modulate the shear behaviour of steel beams with corrugated webs (SBCWs). However, present design standards for SBCWs do not adequately address this issue. The impact of shear span-to-effective depth ratio and pure bending spans on the failure mechanism of SBCWs was investigated in this study. Under four-point bending, three beams with shear-span-to-effective-depth-ratios ranging from 1.65 to 2.5 were examined to investigate the relationship between shear and bending spans and failure mechanisms. ANSYS software was used to create finite element models for the tested SBCWs using the finite element technique. In addition, the experimental findings are compared to two codes, specifically DASt-Rishtlinie015 and EN 1993-1-5. Moreover, an analytical section comprised of the creation of a three-dimensional (3D) finite element model (FEM) was implemented. Finally, a parametric study using the verified FE model was conducted to assess the impact of shear and pure bending spans on the overall behaviour of SBCWs. As a result, the shear span and horizontal fold length of CWSBs are key components for determining the strength and failure modes of beams. Furthermore, the load capabilities and stiffness of CWSBs were more greatly affected by increasing the shear span than by increasing the pure bending one

    Effect of Normal and Rubberized Concrete Properties on the Behavior of RC Columns Strengthened with EB CFRP Laminates and Welded Wire Mesh under Static Axial Loading

    No full text
    The huge amounts of old and damaged tires spread worldwide has caused many complex environmental risks. The old tires have been converted to crumb rubber (CR) and tire recycled steel fiber (RSF) to facilitate their use. This study used CR to partially replace natural sand in reinforced (RC) columns. Externally bonded (EB) carbon-fiber-reinforced polymer (CFRP) laminates, welded wire mesh (WWM), and RSF were used to enhance the axial behavior of the tested columns to overcome the concrete deficiencies resulting from the inclusion of the CR instead of natural sand. Eighteen columns were prepared and tested to discuss the effects of strengthening type, CR content, RSF, and strengthening area on the axial behavior of the RC columns. Certain columns were internally reinforced with WWM, while others were externally strengthened with EB CFRP laminates. Partially or fully EB CFRP laminates were used to strengthen the columns. Moreover, one column was cast with NC and 0.2% RSF to investigate the role of RSF in confining the column. The results demonstrated a concrete strength reduction for the rubberized concrete (CRC) as the CR content increased. Conversely, the strengthened columns experienced higher load capacities than the corresponding un-strengthened ones cast with the same concrete mix. Moreover, adding 2% RSF to the NC mix could enhance the column capacity, although it decreased the concrete strength. Furthermore, using two CFRP layers increased the load capacity and ductility of the strengthened columns. The strengthened column cast with 50% CR showed the highest load efficiency (334.3% compared to the un-strengthened one)

    Evaluating and selecting the best sustainable ‎concrete mixes based on recycled waste materials

    No full text
    Sustainable concrete is considered a very important material in building construction in terms of achieving sustainability pillars and improving its properties. It includes many recent types of construction concrete wastes, natural recycled wastes, and mineral materials. These sustainable concrete types are governed by several criteria leading to difficulty in determining the best. In this research, a sustainable concrete selection decision-making model (SCSDMM) was developed to support the selection of the best sustainable concrete by applying two modules. Module 01 utilized the fuzzy logic technique for evaluating the proposed criteria, which are controlled by several factors using logical rules for relating factor weights. Module 02 was based on the analytic hierarchy process (AHP), considering applying sustainability principles and aimed to support the final decision for determining the best sustainable concrete‎. The proposed model dealt with nine replacement materials to produce sustainable concrete mixes as alternatives. The comparison criteria included many characteristics of compressive strength, tensile strength, low water absorption, low environmental impact, cost savings, and recycled materials availability. The model was applied using data from two case studies in the Kingdom of Saudi Arabia (KSA) and Egypt. The results showed that compressive ‎strength ‎and low water absorption were rated as the most important criteria, while the importance of recycled materials availability represented the lowest‎. ‎The final decision favored using recycled natural powder (RNP) in KSA, followed by fine recycled concrete aggregate (FRNA). At the same time, silica fume (SF) was supported to be used preferably in Egypt, followed by fine recycled concrete aggregated (FRCA). To evaluate the model's robustness, sensitivity analysis tests were conducted to measure the effects of modifying criteria and alternatives' relative weights on the final decision. The SCSDMM can accept more concrete mixes alternatives and criteria as well as it can also be applied in other countries

    Failure Mechanism of Hybrid Steel Beams with Trapezoidal Corrugated-Web Non-Welded Inclined Folds

    No full text
    Literature of Steel Beams with a thin-walled trapezoidal Corrugated Web (SBCWs) shows that the capacity of SBCWs is affected by both the fatigue cracks initiated along the inclined folds (IFs) and the maximal additional stress located in the middle of the IFs. An experimental investigation on the behaviour of hybrid SBCWs under flexure is presented in this paper. This study focuses on the effect of the welding IF between the web and flanges (IFs welded or non-welded), the horizontal-fold length (200, 260, and 350 mm), and transversal flange stiffeners on the failure mechanism of the SBCW under three line load. Accordingly, six hybrid specimens were fabricated, instrumented, and tested (five SBCW specimens and one specimen with a flat web). The test setup was designed to generate shear and a moment in the testing zone via three-point bending. The results indicated that non-welded IFs specimens with or without flange stiffeners failed owing to web tearing after web and flange local buckling. The failure mode of the specimen with continuous welding between the web and flanges was local flange buckling. Finally, the paper presents a comparison between the experimental results and the European Code to predict the capacity of the flange towards local buckling. It was concluded that the non-welding the IFs affected the inelastic behaviour and the capacity of the SBCWs. In addition, the bending resistance equations presented by EN 1993-1-5 can safely predict the test results of the non-welded inclined fold and yield a high safe variation
    corecore