265 research outputs found
Projective, Sparse, and Learnable Latent Position Network Models
When modeling network data using a latent position model, it is typical to
assume that the nodes' positions are independently and identically distributed.
However, this assumption implies the average node degree grows linearly with
the number of nodes, which is inappropriate when the graph is thought to be
sparse. We propose an alternative assumption---that the latent positions are
generated according to a Poisson point process---and show that it is compatible
with various levels of sparsity. Unlike other notions of sparse latent position
models in the literature, our framework also defines a projective sequence of
probability models, thus ensuring consistency of statistical inference across
networks of different sizes. We establish conditions for consistent estimation
of the latent positions, and compare our results to existing frameworks for
modeling sparse networks.Comment: 51 pages, 2 figure
Location and welfare in cities: impacts of policy interventions on the urban poor
Informal settlements are an integral part of the urban landscape in developing countries. These settlements are widely distributed within cities, including central business centers and peripheral areas with environment hazards. In most cases, residents of these settlements do not have access to basic public services and amenities. In this paper, the authors examine the impact of interventions, such as upgrading basic services and resettlement policies, on the welfare of residents of these informal settlements, who are typically the urban poor. To examine these interventions, they estimate models of residential location choice and allow households to be sensitive to commuting costs to work, demand for public services, and preferences for community composition. The authors'empirical analysis is based on recently collected survey data from Pune, India, and shows that poor households prefer to live close to work and in communities that consist of people sharing common socio-demographic characteristics. From the perspective of households living in informal settlements, upgrading settlements in the original place is welfare enhancing. If a household must be relocated, it greatly prefers to be moved to a community that resembles its current community.Municipal Financial Management,Public Health Promotion,Decentralization,Housing&Human Habitats,Urban Services to the Poor,Municipal Financial Management,Housing&Human Habitats,VN-Acb Mis -- IFC-00535908,Urban Housing,City Development Strategies
Quantifying the complexity of random Boolean networks
We study two measures of the complexity of heterogeneous extended systems,
taking random Boolean networks as prototypical cases. A measure defined by
Shalizi et al. for cellular automata, based on a criterion for optimal
statistical prediction [Shalizi et al., Phys. Rev. Lett. 93, 118701 (2004)],
does not distinguish between the spatial inhomogeneity of the ordered phase and
the dynamical inhomogeneity of the disordered phase. A modification in which
complexities of individual nodes are calculated yields vanishing complexity
values for networks in the ordered and critical regimes and for highly
disordered networks, peaking somewhere in the disordered regime. Individual
nodes with high complexity are the ones that pass the most information from the
past to the future, a quantity that depends in a nontrivial way on both the
Boolean function of a given node and its location within the network.Comment: 8 pages, 4 figure
Hawkes process as a model of social interactions: a view on video dynamics
We study by computer simulation the "Hawkes process" that was proposed in a
recent paper by Crane and Sornette (Proc. Nat. Acad. Sci. USA 105, 15649
(2008)) as a plausible model for the dynamics of YouTube video viewing numbers.
We test the claims made there that robust identification is possible for
classes of dynamic response following activity bursts. Our simulated timeseries
for the Hawkes process indeed fall into the different categories predicted by
Crane and Sornette. However the Hawkes process gives a much narrower spread of
decay exponents than the YouTube data, suggesting limits to the universality of
the Hawkes-based analysis.Comment: Added errors to parameter estimates and further description. IOP
style, 13 pages, 5 figure
Inferring hidden Markov models from noisy time sequences: a method to alleviate degeneracy in molecular dynamics
We present a new method for inferring hidden Markov models from noisy time
sequences without the necessity of assuming a model architecture, thus allowing
for the detection of degenerate states. This is based on the statistical
prediction techniques developed by Crutchfield et al., and generates so called
causal state models, equivalent to hidden Markov models. This method is
applicable to any continuous data which clusters around discrete values and
exhibits multiple transitions between these values such as tethered particle
motion data or Fluorescence Resonance Energy Transfer (FRET) spectra. The
algorithms developed have been shown to perform well on simulated data,
demonstrating the ability to recover the model used to generate the data under
high noise, sparse data conditions and the ability to infer the existence of
degenerate states. They have also been applied to new experimental FRET data of
Holliday Junction dynamics, extracting the expected two state model and
providing values for the transition rates in good agreement with previous
results and with results obtained using existing maximum likelihood based
methods.Comment: 19 pages, 9 figure
Nonlinear aspects of the EEG during sleep in children
Electroencephalograph (EEG) analysis enables the neuronal behavior of a
section of the brain to be examined. If the behavior is nonlinear then
nonlinear tools can be used to glean information on brain behavior, and aid in
the diagnosis of sleep abnormalities such as obstructive sleep apnea syndrome
(OSAS). In this paper the sleep EEGs of a set of normal and mild OSAS children
are evaluated for nonlinear behaviour. We consider how the behaviour of the
brain changes with sleep stage and between normal and OSAS children.Comment: 9 pages, 2 figures, 4 table
Power-law distributions in empirical data
Power-law distributions occur in many situations of scientific interest and
have significant consequences for our understanding of natural and man-made
phenomena. Unfortunately, the detection and characterization of power laws is
complicated by the large fluctuations that occur in the tail of the
distribution -- the part of the distribution representing large but rare events
-- and by the difficulty of identifying the range over which power-law behavior
holds. Commonly used methods for analyzing power-law data, such as
least-squares fitting, can produce substantially inaccurate estimates of
parameters for power-law distributions, and even in cases where such methods
return accurate answers they are still unsatisfactory because they give no
indication of whether the data obey a power law at all. Here we present a
principled statistical framework for discerning and quantifying power-law
behavior in empirical data. Our approach combines maximum-likelihood fitting
methods with goodness-of-fit tests based on the Kolmogorov-Smirnov statistic
and likelihood ratios. We evaluate the effectiveness of the approach with tests
on synthetic data and give critical comparisons to previous approaches. We also
apply the proposed methods to twenty-four real-world data sets from a range of
different disciplines, each of which has been conjectured to follow a power-law
distribution. In some cases we find these conjectures to be consistent with the
data while in others the power law is ruled out.Comment: 43 pages, 11 figures, 7 tables, 4 appendices; code available at
http://www.santafe.edu/~aaronc/powerlaws
Dynamic communities in multichannel data: An application to the foreign exchange market during the 2007--2008 credit crisis
We study the cluster dynamics of multichannel (multivariate) time series by
representing their correlations as time-dependent networks and investigating
the evolution of network communities. We employ a node-centric approach that
allows us to track the effects of the community evolution on the functional
roles of individual nodes without having to track entire communities. As an
example, we consider a foreign exchange market network in which each node
represents an exchange rate and each edge represents a time-dependent
correlation between the rates. We study the period 2005-2008, which includes
the recent credit and liquidity crisis. Using dynamical community detection, we
find that exchange rates that are strongly attached to their community are
persistently grouped with the same set of rates, whereas exchange rates that
are important for the transfer of information tend to be positioned on the
edges of communities. Our analysis successfully uncovers major trading changes
that occurred in the market during the credit crisis.Comment: 8 pages, 6 figures, accepted for publication in Chao
Spreading in Social Systems: Reflections
In this final chapter, we consider the state-of-the-art for spreading in
social systems and discuss the future of the field. As part of this reflection,
we identify a set of key challenges ahead. The challenges include the following
questions: how can we improve the quality, quantity, extent, and accessibility
of datasets? How can we extract more information from limited datasets? How can
we take individual cognition and decision making processes into account? How
can we incorporate other complexity of the real contagion processes? Finally,
how can we translate research into positive real-world impact? In the
following, we provide more context for each of these open questions.Comment: 7 pages, chapter to appear in "Spreading Dynamics in Social Systems";
Eds. Sune Lehmann and Yong-Yeol Ahn, Springer Natur
The Visibility Graph: a new method for estimating the Hurst exponent of fractional Brownian motion
Fractional Brownian motion (fBm) has been used as a theoretical framework to
study real time series appearing in diverse scientific fields. Because its
intrinsic non-stationarity and long range dependence, its characterization via
the Hurst parameter H requires sophisticated techniques that often yield
ambiguous results. In this work we show that fBm series map into a scale free
visibility graph whose degree distribution is a function of H. Concretely, it
is shown that the exponent of the power law degree distribution depends
linearly on H. This also applies to fractional Gaussian noises (fGn) and
generic f^(-b) noises. Taking advantage of these facts, we propose a brand new
methodology to quantify long range dependence in these series. Its reliability
is confirmed with extensive numerical simulations and analytical developments.
Finally, we illustrate this method quantifying the persistent behavior of human
gait dynamics.Comment: 5 pages, submitted for publicatio
- …