252 research outputs found

    Temporal regularity effects on pre-attentive and attentive processing of deviance

    Get PDF
    Temporal regularity allows predicting the temporal locus of future information thereby potentially facilitating cognitive processing. We applied event-related brain potentials (ERPs) to investigate how temporal regularity impacts pre-attentive and attentive processing of deviance in the auditory modality. Participants listened to sequences of sinusoidal tones differing exclusively in pitch. The inter-stimulus interval (ISI) in these sequences was manipulated to convey either isochronous or random temporal structure. In the pre-attentive session, deviance processing was unaffected by the regularity manipulation as evidenced in three event-related-potentials (ERPs): mismatch negativity (MMN), P3a, and reorienting negativity (RON). In the attentive session, the P3b was smaller for deviant tones embedded in irregular temporal structure, while the N2b component remained unaffected. These findings confirm that temporal regularity can reinforce cognitive mechanisms associated with the attentive processing of deviance. Furthermore, they provide evidence for the dynamic allocation of attention in time and dissociable pre-attentive and attention-dependent temporal processing mechanisms

    Hypersensitivity to passive voice hearing in hallucination proneness

    Get PDF
    Voices are a complex and rich acoustic signal processed in an extensive cortical brain network. Specialized regions within this network support voice perception and production and may be differentially affected in pathological voice processing. For example, the experience of hallucinating voices has been linked to hyperactivity in temporal and extra-temporal voice areas, possibly extending into regions associated with vocalization. Predominant self-monitoring hypotheses ascribe a primary role of voice production regions to auditory verbal hallucinations (AVH). Alternative postulations view a generalized perceptual salience bias as causal to AVH. These theories are not mutually exclusive as both ascribe the emergence and phenomenology of AVH to unbalanced top-down and bottom-up signal processing. The focus of the current study was to investigate the neurocognitive mechanisms underlying predisposition brain states for emergent hallucinations, detached from the effects of inner speech. Using the temporal voice area (TVA) localizer task, we explored putative hypersalient responses to passively presented sounds in relation to hallucination proneness (HP). Furthermore, to avoid confounds commonly found in in clinical samples, we employed the Launay-Slade Hallucination Scale (LSHS) for the quantification of HP levels in healthy people across an experiential continuum spanning the general population. We report increased activation in the right posterior superior temporal gyrus (pSTG) during the perception of voice features that positively correlates with increased HP scores. In line with prior results, we propose that this right-lateralized pSTG activation might indicate early hypersensitivity to acoustic features coding speaker identity that extends beyond own voice production to perception in healthy participants prone to experience AVH

    When temporal prediction errs:ERP responses to delayed action-feedback onset

    Get PDF
    Sensory suppression effects observed in electroencephalography (EEG) index successful predictions of the type and timing of self-generated sensory feedback. However, it is unclear how precise the timing prediction of sensory feedback is, and how temporal delays between an action and its sensory feedback affect perception. The current study investigated how prediction errors induced by delaying tone onset times affect the processing of sensory feedback in audition. Participants listened to self-generated (via button press) or externally generated tones. Self-generated tones were presented either without or with various delays (50, 100, or 250 ms; in 30% of trials). Comparing listening to externally generated and self-generated tones resulted in action-related P50 amplitude suppression to tones presented immediately or 100 ms after the button press. Subsequent ERP responses became more sensitive to the type of delay. Whereas the comparison of actual and predicted sensory feedback (N1) tolerated temporal uncertainty up to 100 ms, P2 suppression was modulated by delay in a graded manner: suppression decreased with an increase in sensory feedback delay. Self-generated tones occurring 250 ms after the button press additionally elicited an enhanced N2 response. These findings suggest functionally dissociable processes within the forward model that are affected by the timing of sensory feedback to self-action: relative tolerance of temporal delay in the P50 and N1, confirming previous results, but increased sensitivity in the P2. Further, they indicate that temporal prediction errors are treated differently by the auditory system: only delays that occurred after a temporal integration window (∼100 ms) impact the conscious detection of altered sensory feedback

    Expectancy changes the self-monitoring of voice identity

    Get PDF
    Self-voice attribution can become difficult when voice characteristics are ambiguous, but functional magnetic resonance imaging (fMRI) investigations of such ambiguity are sparse. We utilized voice-morphing (self-other) to manipulate (un-)certainty in self-voice attribution in a button-press paradigm. This allowed investigating how levels of self-voice certainty alter brain activation in brain regions monitoring voice identity and unexpected changes in voice playback quality. FMRI results confirmed a self-voice suppression effect in the right anterior superior temporal gyrus (aSTG) when self-voice attribution was unambiguous. Although the right inferior frontal gyrus (IFG) was more active during a self-generated compared to a passively heard voice, the putative role of this region in detecting unexpected self-voice changes during the action was demonstrated only when hearing the voice of another speaker and not when attribution was uncertain. Further research on the link between right aSTG and IFG is required and may establish a threshold monitoring voice identity in action. The current results have implications for a better understanding of the altered experience of self-voice feedback in auditory verbal hallucinations

    Emotional salience but not valence impacts anterior cingulate cortex conflict processing

    Get PDF
    Stimuli that evoke emotions are salient, draw attentional resources, and facilitate situationally appropriate behavior in complex or conflicting environments. However, negative and positive emotions may motivate different response strategies. For example, a threatening stimulus might evoke avoidant behavior, whereas a positive stimulus may prompt approaching behavior. Therefore, emotional stimuli might either elicit differential behavioral responses when a conflict arises or simply mark salience. The present study used functional magnetic resonance imaging to investigate valence-specific emotion effects on attentional control in conflict processing by employing an adapted flanker task with neutral, negative, and positive stimuli. Slower responses were observed for incongruent than congruent trials. Neural activity in the dorsal anterior cingulate cortex was associated with conflict processing regardless of emotional stimulus quality. These findings confirm that both negative and positive emotional stimuli mark salience in both low (congruent) and high (incongruent) conflict scenarios. Regardless of the conflict level, emotional stimuli deployed greater attentional resources in goal directed behavior

    About time:Ageing influences neural markers of temporal predictability

    Get PDF
    Timing abilities help organizing the temporal structure of events but are known to change systematically with age. Yet, how the neuronal signature of temporal predictability changes across the age span remains unclear. Younger (n = 21; 23.1 years) and older adults (n = 21; 68.5 years) performed an auditory oddball task, consisting of isochronous and random sound sequences. Results confirm an altered P50 response in the older compared to younger participants. P50 amplitudes differed between the isochronous and random temporal structures in younger, and for P200 in the older group. These results suggest less efficient sensory gating in older adults in both isochronous and random auditory sequences. N100 amplitudes were more negative for deviant tones. P300 amplitudes were parietally enhanced in younger, but not in older adults. In younger participants, the P50 results confirm that this component marks temporal predictability, indicating sensitive gating of temporally regular sound sequences.</p

    Auditory Predictions and Prediction Errors in Response to Self-Initiated Vowels.

    Get PDF
    It has been suggested that speech production is accomplished by an internal forward model, reducing processing activity directed to self-produced speech in the auditory cortex. The current study uses an established N1-suppression paradigm comparing self- and externally initiated natural speech sounds to answer two questions: (1) Are forward predictions generated to process complex speech sounds, such as vowels, initiated via a button press? (2) Are prediction errors regarding self-initiated deviant vowels reflected in the corresponding ERP components? Results confirm an N1-suppression in response to self-initiated speech sounds. Furthermore, our results suggest that predictions leading to the N1-suppression effect are specific, as self-initiated deviant vowels do not elicit an N1-suppression effect. Rather, self-initiated deviant vowels elicit an enhanced N2b and P3a compared to externally generated deviants, externally generated standard, or self-initiated standards, again confirming prediction specificity. Results show that prediction errors are salient in self-initiated auditory speech sounds, which may lead to more efficient error correction in speech production

    The role of the medial geniculate body of the thalamus in the pathophysiology of tinnitus and implications for treatment

    Get PDF
    Tinnitus is an auditory sensation in the absence of actual external stimulation. Different clinical interventions are used in tinnitus treatment, but only few patients respond to available options. The lack of successful tinnitus treatment is partly due to the limited knowledge about the mechanisms underlying tinnitus. Recently, the auditory part of the thalamus has gained attention as a central structure in the neuropathophysiology of tinnitus. Increased thalamic spontaneous firing rate, bursting activity and oscillations, alongside an increase of GABAergic tonic inhibition have been shown in the auditory thalamus in animal models of tinnitus. In addition, clinical neuroimaging studies have shown structural and functional thalamic changes with tinnitus. This review provides a systematic overview and discussion of these observations that support a central role of the auditory thalamus in tinnitus. Based on this approach, a neuromodulative treatment option for tinnitus is proposed

    The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes

    Get PDF
    a b s t r a c t The basal ganglia (BG) are part of extensive subcortico-cortical circuits that are involved in a variety of motor and non-motor cognitive functions. Accumulating evidence suggests that one specific function that engages the BG and associated cortico-striato-thalamo-cortical circuitry is temporal processing, i.e., the mechanisms that underlie the encoding, decoding and evaluation of temporal relations or temporal structure. In the current study we investigated the interplay of two processes that require precise representations of temporal structure, namely the perception of an auditory pacing signal and manual motor production by means of finger tapping in a sensorimotor synchronization task. Patients with focal lesions of the BG and healthy control participants were asked to align finger taps to tone sequences that either did or did not contain a tempo acceleration or tempo deceleration at a predefined position, and to continue tapping at the final tempo after the pacing sequence had ceased. Performance in this adaptive synchronization-continuation paradigm differed between the two groups. Selective damage to the BG affected the abilities to detect tempo changes and to perform attention-dependent error correction, particularly in response to tempo decelerations. An additional assessment of preferred spontaneous, i.e., unpaced but regular, production rates yielded more heterogeneous results in the patient group. Together these findings provide evidence for less efficient processing in the perception and the production of temporal structure in patients with focal BG lesions. The results also support the functional role of the BG system in attention-dependent temporal processing
    corecore