6,094 research outputs found

    Merry Law School

    Get PDF

    After College I Noticed

    Get PDF

    Neutron star cooling after deep crustal heating in the X-ray transient KS 1731-260

    Full text link
    We simulate the cooling of the neutron star in the X-ray transient KS 1731-260 after the source returned to quiescence in 2001 from a long (>~ 12.5 yr) outburst state. We show that the cooling can be explained assuming that the crust underwent deep heating during the outburst stage. In our best theoretical scenario the neutron star has no enhanced neutrino emission in the core, and its crust is thin, superfluid, and has the normal thermal conductivity. The thermal afterburst crust-core relaxation in the star may be not over.Comment: 5 pages, 2 figures, accepted by MNRAS. In v.2, two references added and typos correcte

    Proton Drip-Line Calculations and the Rp-process

    Get PDF
    One-proton and two-proton separation energies are calculated for proton-rich nuclei in the region A=41−75 A=41-75 . The method is based on Skyrme Hartree-Fock calculations of Coulomb displacement energies of mirror nuclei in combination with the experimental masses of the neutron-rich nuclei. The implications for the proton drip line and the astrophysical rp-process are discussed. This is done within the framework of a detailed analysis of the sensitivity of rp process calculations in type I X-ray burst models on nuclear masses. We find that the remaining mass uncertainties, in particular for some nuclei with N=ZN=Z, still lead to large uncertainties in calculations of X-ray burst light curves. Further experimental or theoretical improvements of nuclear mass data are necessary before observed X-ray burst light curves can be used to obtain quantitative constraints on ignition conditions and neutron star properties. We identify a list of nuclei for which improved mass data would be most important.Comment: 20 pages, 9 figures, 2 table

    Dependence of X-Ray Burst Models on Nuclear Reaction Rates

    Full text link
    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p,γ\gamma), (α\alpha,γ\gamma), and (α\alpha,p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the {\Kepler} stellar evolution code. All relevant reaction rates on neutron deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 highest impact reaction rate changes were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape X-ray burst observables and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.Comment: 24 pages, 13 figures, 4 tables, submitte

    Metassembler: merging and optimizing de novo genome assemblies

    Get PDF
    Genome assembly projects typically run multiple algorithms in an attempt to find the single best assembly, although those assemblies often have complementary, if untapped, strengths and weaknesses. We present our metassembler algorithm that merges multiple assemblies of a genome into a single superior sequence. We apply it to the four genomes from the Assemblathon competitions and show it consistently and substantially improves the contiguity and quality of each assembly. We also develop guidelines for meta-assembly by systematically evaluating 120 permutations of merging the top 5 assemblies of the first Assemblathon competition. The software is open-source at http://metassembler.sourceforge.net
    • …
    corecore