1,772 research outputs found
Two-dimensional droplet spreading over random topographical substrates
We examine theoretically the effects of random topographical substrates on
the motion of two-dimensional droplets via appropriate statistical approaches.
Different random substrate families are represented as stationary random
functions. The variance of the droplet shift at both early times and in the
long-time limit is deduced and the droplet footprint is found to be a normal
random variable at all times. It is shown that substrate roughness decreases
droplet wetting, illustrating also the tendency of the droplet to slide without
spreading as equilibrium is approached. Our theoretical predictions are
verified by numerical experiments.Comment: 12 pages, 5 figure
Geometry-induced phase transition in fluids: capillary prewetting
We report a new first-order phase transition preceding capillary condensation
and corresponding to the discontinuous formation of a curved liquid meniscus.
Using a mean-field microscopic approach based on the density functional theory
we compute the complete phase diagram of a prototypical two-dimensional system
exhibiting capillary condensation, namely that of a fluid with long-ranged
dispersion intermolecular forces which is spatially confined by a substrate
forming a semi-infinite rectangular pore exerting long-ranged dispersion forces
on the fluid. In the T-mu plane the phase line of the new transition is
tangential to the capillary condensation line at the capillary wetting
temperature, Tcw. The surface phase behavior of the system maps to planar
wetting with the phase line of the new transition, termed capillary prewetting,
mapping to the planar prewetting line. If capillary condensation is approached
isothermally with T>Tcw, the meniscus forms at the capping wall and unbinds
continuously, making capillary condensation a second-order phenomenon. We
compute the corresponding critical exponent for the divergence of adsorption.Comment: 5 pages, 4 figures, 5 movie
Targeting Toll-Like Receptors: Promising Therapeutic Strategies for the Management of Sepsis-Associated Pathology and Infectious Diseases.
Toll-like receptors (TLRs) are pattern recognition receptors playing a fundamental role in sensing microbial invasion and initiating innate and adaptive immune responses. TLRs are also triggered by danger signals released by injured or stressed cells during sepsis. Here we focus on studies developing TLR agonists and antagonists for the treatment of infectious diseases and sepsis. Positioned at the cell surface, TLR4 is essential for sensing lipopolysaccharide of Gram-negative bacteria, TLR2 is involved in the recognition of a large panel of microbial ligands, while TLR5 recognizes flagellin. Endosomal TLR3, TLR7, TLR8, TLR9 are specialized in the sensing of nucleic acids produced notably during viral infections. TLR4 and TLR2 are favorite targets for developing anti-sepsis drugs, and antagonistic compounds have shown efficient protection from septic shock in pre-clinical models. Results from clinical trials evaluating anti-TLR4 and anti-TLR2 approaches are presented, discussing the challenges of study design in sepsis and future exploitation of these agents in infectious diseases. We also report results from studies suggesting that the TLR5 agonist flagellin may protect from infections of the gastrointestinal tract and that agonists of endosomal TLRs are very promising for treating chronic viral infections. Altogether, TLR-targeted therapies have a strong potential for prevention and intervention in infectious diseases, notably sepsis
Identification of evolutionarily meaningful information within the mammalian RNA editing landscape
A large comparative genomic sequence study has determined the extent of conservation between RNA editing sites within the mammalian evolutionary tree. See related research by Pinto et al., http://genomebiology.com/2014/15/1/R
Architecturally diverse proteins converge on an analogous mechanism to inactivate Uracil-DNA glycosylase
Uracil-DNA glycosylase (UDG) compromises the replication strategies of diverse viruses from unrelated lineages. Virally encoded proteins therefore exist to limit, inhibit or target UDG activity for proteolysis. Viral proteins targeting UDG, such as the bacteriophage proteins ugi, and p56, and the HIV-1 protein Vpr, share no sequence similarity, and are not structurally homologous. Such diversity has hindered identification of known or expected UDG-inhibitory activities in other genomes. The structural basis for UDG inhibition by ugi is well characterized; yet, paradoxically, the structure of the unbound p56 protein is enigmatically unrevealing of its mechanism. To resolve this conundrum, we determined the structure of a p56 dimer bound to UDG. A helix from one of the subunits of p56 occupies the UDG DNA-binding cleft, whereas the dimer interface forms a hydrophobic box to trap a mechanistically important UDG residue. Surprisingly, these p56 inhibitory elements are unexpectedly analogous to features used by ugi despite profound architectural disparity. Contacts from B-DNA to UDG are mimicked by residues of the p56 helix, echoing the role of ugi’s inhibitory beta strand. Using mutagenesis, we propose that DNA mimicry by p56 is a targeting and specificity mechanism supporting tight inhibition via hydrophobic sequestration
Asymptotic analysis of evaporating droplets
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.We consider the evaporation dynamics of a two-dimensional, partially-wetting sessile droplet of a
volatile liquid in its pure vapour, which is supported on a smooth horizontal superheated substrate. Assuming
that the liquid properties remain unchanged, we utilise a one-sided lubrication-type model for the evolution of
the droplet thickness, which accounts for the effects of evaporation, capillarity, slip and the kinetic resistance
to evaporation. We follow an asymptotic approach, which yields a set of coupled evolution equations for
the droplet radius and area, estimating analytically the evaporation-modified apparent angle when evaporation
effects are weak. The validity of our matching procedure is verified by numerical experiments, obtaining also
an estimate for the evaporation time
Employing surfactant-assisted hydrothermal synthesis to control CuGaO2 nanoparticle formation and improved carrier selectivity of perovskite solar cells
Delafossites like CuGaO2 have appeared as promising p-type semiconductor
materials for opto-electronic applications mainly due to their high optical
transparency and electrical conductivity. However, existing synthetic efforts
usually result in particles with large diameter limiting their performance
relevant to functional electronic applications. In this article, we report a
novel surfactant-assisted hydrothermal synthesis method, which allows the
development of ultrafine (~5 nm) monodispersed p-type CuGaO2 nanoparticles
(NPs). We show that DMSO can be used as a ligand and dispersing solvent for
stabilizing the CuGaO2 NPs. The resulting dispersion is used for the
fabrication of dense, compact functional CuGaO2 electronic layer with
properties relevant to advanced optoelectronic applications. As a proof of
concept, the surfactant-assisted hydrothermal synthesized CuGaO2 is
incorporated as a hole transporting layer (HTL) in the inverted p-i-n
perovskite solar cell device architecture providing improved hole carrier
selectivity and power conversion efficiency compared to conventional PEDOT:PSS
HTL based perovskite solar cells
- …