247 research outputs found

    Electrical modeling of the photoelectric effect induced by a pulsed laser applied to an SRAM cell

    Get PDF
    International audienceThis abstract presents an electrical model of an SRAM cell exposed to a pulsed Photoelectrical Laser Stimulation (PLS), based on our past model of MOS transistor under laser illumination. The validity of our model is assessed by the very good correlation obtained between measurements and electrical simulation. These simulations are capable to explain some specific points. For example, in theory, a SRAM cell under PLS have four sensitive areas. But in measurements only three areas were revealed. A hypothesis was presented in this paper and confirm by electrical simulation. The specific topology of the cell masks one sensitive area. Therefore the electrical model could be used as a tool of characterization of a CMOS circuits under PLS

    Electrical model of an NMOS body biased structure in triple-well technology under photoelectric laser stimulation

    Get PDF
    International audience— This study is driven by the need to optimize failure analysis methodologies based on laser/silicon interactions with an integrated circuit using a triple-well process. It is therefore mandatory to understand the behavior of elementary devices to laser illumination, in order to model and predict the behavior of more complex circuits. This paper presents measurements of the photoelectric currents induced by a pulsed-laser on an NMOS transistor in triple-well Psubstrate/DeepNwell/Pwell structure dedicated to low power body biasing techniques. This evaluation compares the triple-well structure to a classical Psubstrate-only structure of an NMOS transistor. It reveals the possible activation change of the bipolar transistors. Based on these experimental measurements, an electrical model is proposed that makes it possible to simulate the effects induced by photoelectric laser stimulation

    Control and efficiency analysis for a Lundell-alternator/active-rectifier system in automotive applications

    Get PDF
    This paper presents a control strategy for a conventional Lundell alternator and an active-rectifier. The control scheme focuses on the minimisation of the stator copper losses of the alternator in an effort to maximise its efficiency. The modulation scheme of the active-rectifier is being investigated with the introduction of three different modulation techniques in order to quantify the effect they have on the alternator’s efficiency. Steady-state results from experimental measurements of the alternator rectifier system are compared against a standard passive rectifier. The comparison indicates that the modulation scheme of the active-rectifier is significant to the alternator’s efficiency as well as to the overall system efficiency

    Efficiency improvement and power loss breakdown for a Lundell-alternator/active-rectifier system in automotive applications

    Get PDF
    A control strategy for a conventional Lundell alternator and an active-rectifier using different modulation schemes was proposed in previous work. The modulation techniques examined indicated that the system could operate more efficiently than a passive rectifier over a certain speed and power range. This paper extends the modulation scheme analysis using a SVM scheme with six commutations per switching cycle, giving better electrical and overall efficiency. Furthermore, a power loss breakdown is performed for the active-rectifier with the assistance of experimental and simulation results of double pulse tests. Switching loss estimation curves are produced allowing the loss examination of the active-rectifier. Switching losses account only for a minor portion of the total rectifier losses in comparison to conduction losses. Finally, a higher dc-link voltage of 14.5 V was introduced using SVM scheme, giving better efficiency, in order to exploit further the rectifier loss distribution
    corecore