195 research outputs found

    DSC Study of Collagen in Disc Disease

    Get PDF
    Differential scanning calorimetry (DSC) has been used to estimate the effect of disc disease on the collagen helix-coil transition and morphology for tissue extracted from patients during surgical operation. Forty discs were obtained from patients with degenerative disc disease undergoing surgery for low back pain. The patients were in the age between 20 and 70 years old. The specimens were kept wet during DSC experiment. The data allow the comparison between thermal stability of collagen tissue from healthy patients and from patients suffering from disc disease. In the paper the comparison between thermal helix-coil transition for collagen fibers from patients suffering from disc disease and collagen fibers from healthy organisms has been discussed. The heating rate has an influence on the position on denaturation temperatures of collagen in disc tissues. Higher helix-coil transition temperature of collagen in degenerated disc suggests that additional intermolecular cross linking of collagen fibers occurs. Denaturation temperatures of collagen in degenerated male disc possess smaller values than in female ones. Disc disease induces changes in collagen structure and leads to formation of additional crosslinks between collagen fibers

    Biomaterials with potential use in bone tissue regeneration-collagen/chitosan/silk fibroin scaffolds cross-linked by EDC/NHS

    Get PDF
    Blending of different biopolymers, e.g., collagen, chitosan, silk fibroin and cross-linking modifications of these mixtures can lead to new materials with improved physico-chemical properties, compared to single-component scaffolds. Three-dimensional scaffolds based on threecomponent mixtures of silk fibroin, collagen and chitosan, chemically cross-linked, were prepared and their physico-chemical and biological properties were evaluated. A mixture of EDC (N-(3- dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride) and NHS (N-hydroxysuccinimide) was used as a cross-linking agent. FTIR was used to observe the position of the peaks characteristic for collagen, chitosan and silk fibroin. The following properties depending on the scaffold structure were studied: swelling behavior, liquid uptake, moisture content, porosity, density, and mechanical parameters. Scanning Electron Microscopy imaging was performed. Additionally, the biological properties of these materials were assessed, by metabolic activity assay. The results showed that the three-component mixtures, cross-linked by EDC/NHS and prepared by lyophilization method, presented porous structures. They were characterized by a high swelling degree. The composition of scaffolds has an influence on mechanical properties. All of the studied materials were cytocompatible with MG-63 osteoblast-like cells.This research was founded by National Science Centre, grant 2018/31/N/ST8/01391 and by Polish National Agency for Academic Exchange, Iwanowska project PPN/IWA/2018/1/00064/U/00001

    The influence of KrF excimer laser irradiation on the surface of collagen and collagen/PVP films

    Get PDF
    The surface properties of collagen and collagen/poly(vinyl pyrrolidone) (PVP) films after KrF excimer laser irradiation (λ=248nm) were investigated by means of the technique of scanning electron microscopy (SEM) and optical microscopy (OM). The laser irradiation of the used specimens caused an expansion of materials above their surface with pronounced sings of its melting. The height of the ablated volume in a case of collagen film at a fluence of 1.1J/cm2 was approximately 5μm. A white damage appears on the treated surfaces at a threshold of 0.5J/cm2 with a single pulse and becomes more visible for a higher fluence. It is also noteworthy that along with increasing fluences (beginning from the fluence of 1.7J/cm2), the characteristic filaments at the spot edges are observed. The local heat and pressure generated by the laser radiation were able to induce bubble formation on the surface. Further bubble colliding and bursting produce a three-dimensional polymer “microfoam” structure with interconnected pores. These results can be of interest for some new applications

    Mechanisms of the Influence of UV Irradiation on Collagen and Collagen-Ascorbic Acid Solutions

    Get PDF
    The study of the influence of UV irradiation on collagen solutions has shown the destabilization of the collagen molecule by calorimetric method. It is reflected both in changes of thermodynamic parameters of transition (Tm, ΔH, Cp = f (T)) and in the appearance of a low temperature peak, that is practically irreversible against rescanning. All these indicate that the important defects in the molecule occur. The ESR measurements have shown that the above-mentioned thermal changes are connected with the occurrence of free radicals in solution under UV irradiation. They interact with proline (Pro) residues of the protein with the appearance of secondary free radicals, with following migration to glycine (Gly) residues. The emergence of the free radicals at the Pro and then at the Gly residues may cause the dramatic structural defect resulting from the UV irradiation, which significantly alters the network of hydrogen bonds in the triple helix of the collagen molecule. All this is connected with destabilization of the collagen molecule, because the defects in amino acid residues probably lead to cleavage of covalent bonds near the damaged sites maintaining the triple helical structure. The presence of ascorbic acid in collagen solution protects the collagen molecule from occurring of secondary free radicals

    Mechanisms of the influence of UV irradiation on collagen and collagen-ascorbic acid solutions

    Get PDF
    The study of the influence of UV irradiation on collagen solutions has shown the destabilization of the collagen molecule by calorimetric method. It is reflected both in changes of thermodynamic parameters of transition (Tm, ΔH, Cp=f(t)) and in the appearance of a low temperature peak, that is practically irreversible against rescanning. All these indicate that the important defects in the molecule occur. The ESR measurements have shown that the above-mentioned thermal changes are connected with the occurrence of free radicals in solution under UV irradiation. They interact with proline (Pro) residues of the protein with the appearance of secondary free radicals, with following migration to glycine (Gly) residues. The emergence of the free radicals at the Pro and then at the Gly residues may cause the dramatic structural defect resulting from the UV irradiation, which significantly alters the network of hydrogen bonds in the triple helix of the collagen molecule. All this is connected with destabilization of the collagen molecule, because the defects in amino acid residues probably lead to cleavage of covalent bonds near the damaged sites maintaining the triple helical structure. The presence of ascorbic acid in collagen solution protects the collagen molecule from occurring of secondary free radicals

    Phase behaviour and miscibility studies of collagen/silk fibroin macromolecular system in dilute solutions and solid state

    Get PDF
    Miscibility is an important issue in biopolymer blends for analysis of the behavior of polymer pairs through the detection of phase separation and improvement of the mechanical and physical properties of the blend. This study presents the formulation of a stable and one-phase mixture of collagen and regenerated silk fibroin (RSF), with the highest miscibility ratio between these two macromolecules, through inducing electrostatic interactions, using salt ions. For this aim, a ternary phase diagram was experimentally built for the mixtures, based on observations of phase behavior of blend solutions with various ratios. The miscibility behavior of the blend solutions in the miscible zones of the phase diagram was confirmed quantitatively by viscosimetric measurements. Assessing the effects of biopolymer mixing ratio and salt ions, before and after dialysis of blend solutions, revealed the importance of ion-specific interactions in the formation of coacervate-based materials containing collagen and RSF blends that can be used in pharmaceutical, drug delivery, and biomedical applications. Moreover, the conformational change of silk fibroin from random coil to beta sheet, in solution and in the final solid films, was detected by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. Scanning electron microscopy (SEM) exhibited alterations of surface morphology for the biocomposite films with different ratios. Surface contact angle measurement illustrated different hydrophobic properties for the blended film surfaces. Differential scanning calorimetry (DSC) showed that the formation of the beta sheet structure of silk fibroin enhances the thermal stability of the final blend films. Therefore, the novel method presented in this study resulted in the formation of biocomposite films whose physico-chemical properties can be tuned by silk fibroin conformational changes by applying different component mixing ratios228sem informaçãosem informaçã

    Phase Behaviour and Miscibility Studies of Collagen/Silk Fibroin Macromolecular System in Dilute Solutions and Solid State

    Get PDF
    Miscibility is an important issue in biopolymer blends for analysis of the behavior of polymer pairs through the detection of phase separation and improvement of the mechanical and physical properties of the blend. This study presents the formulation of a stable and one-phase mixture of collagen and regenerated silk fibroin (RSF), with the highest miscibility ratio between these two macromolecules, through inducing electrostatic interactions, using salt ions. For this aim, a ternary phase diagram was experimentally built for the mixtures, based on observations of phase behavior of blend solutions with various ratios. The miscibility behavior of the blend solutions in the miscible zones of the phase diagram was confirmed quantitatively by viscosimetric measurements. Assessing the effects of biopolymer mixing ratio and salt ions, before and after dialysis of blend solutions, revealed the importance of ion-specific interactions in the formation of coacervate-based materials containing collagen and RSF blends that can be used in pharmaceutical, drug delivery, and biomedical applications. Moreover, the conformational change of silk fibroin from random coil to beta sheet, in solution and in the final solid films, was detected by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. Scanning electron microscopy (SEM) exhibited alterations of surface morphology for the biocomposite films with different ratios. Surface contact angle measurement illustrated different hydrophobic properties for the blended film surfaces. Differential scanning calorimetry (DSC) showed that the formation of the beta sheet structure of silk fibroin enhances the thermal stability of the final blend films. Therefore, the novel method presented in this study resulted in the formation of biocomposite films whose physico-chemical properties can be tuned by silk fibroin conformational changes by applying different component mixing ratios
    • …
    corecore