13,731 research outputs found

    Theory of Linear Spin Wave Emission from a Bloch Domain Wall

    Get PDF
    We report an analytical theory of linear emission of exchange spin waves from a Bloch domain wall, excited by a uniform microwave magnetic field. The problem is reduced to a one-dimensional Schr\"odinger-like equation with a P\"oschl-Teller potential and a driving term of the same profile. The emission of plane spin waves is observed at excitation frequencies above a threshold value, as a result of a linear process. The height-to-width aspect ratio of the P\"oschl-Teller profile for a domain wall is found to correspond to a local maximum of the emission efficiency. Furthermore, for a tailored P\"oschl-Teller potential with a variable aspect ratio, particular values of the latter can lead to enhanced or even completely suppressed emission.Comment: added ancillary file

    The electronic structure and localized molecular orbitals in S<SUB>4</SUB>N<SUB>4</SUB> by the CNDO/BW theory

    Get PDF
    The energies calculated for tetranitrogen tetrasulfide, S4N4, by the CNDO/BW theory favor a structure with coplanar nitrogen atoms and not a structure with coplanar sulfur atoms. Both structures have been proposed from experimental studies. Localized molecular orbitals are calculated for S4N4 and used to choose the appropriate Lewis structure for the molecule. The hybridization at the nitrogen and sulfur atoms is discussed. There is electron delocalization in the molecule, the S-N bond is a bent bond involving pure p-orbitals on the sulfur and nitrogen atoms and there is a pure p-bent bond between the sulfur atoms on the same side of the coplanar nitrogen atoms. There is no N-N bond in S4N4

    Primitive Words, Free Factors and Measure Preservation

    Full text link
    Let F_k be the free group on k generators. A word w \in F_k is called primitive if it belongs to some basis of F_k. We investigate two criteria for primitivity, and consider more generally, subgroups of F_k which are free factors. The first criterion is graph-theoretic and uses Stallings core graphs: given subgroups of finite rank H \le J \le F_k we present a simple procedure to determine whether H is a free factor of J. This yields, in particular, a procedure to determine whether a given element in F_k is primitive. Again let w \in F_k and consider the word map w:G x G x ... x G \to G (from the direct product of k copies of G to G), where G is an arbitrary finite group. We call w measure preserving if given uniform measure on G x G x ... x G, w induces uniform measure on G (for every finite G). This is the second criterion we investigate: it is not hard to see that primitivity implies measure preservation and it was conjectured that the two properties are equivalent. Our combinatorial approach to primitivity allows us to make progress on this problem and in particular prove the conjecture for k=2. It was asked whether the primitive elements of F_k form a closed set in the profinite topology of free groups. Our results provide a positive answer for F_2.Comment: This is a unified version of two manuscripts: "On Primitive words I: A New Algorithm", and "On Primitive Words II: Measure Preservation". 42 pages, 14 figures. Some parts of the paper reorganized towards publication in the Israel J. of Mat

    Tangled Nature: A model of emergent structure and temporal mode among co-evolving agents

    Full text link
    Understanding systems level behaviour of many interacting agents is challenging in various ways, here we'll focus on the how the interaction between components can lead to hierarchical structures with different types of dynamics, or causations, at different levels. We use the Tangled Nature model to discuss the co-evolutionary aspects connecting the microscopic level of the individual to the macroscopic systems level. At the microscopic level the individual agent may undergo evolutionary changes due to mutations of strategies. The micro-dynamics always run at a constant rate. Nevertheless, the system's level dynamics exhibit a completely different type of intermittent abrupt dynamics where major upheavals keep throwing the system between meta-stable configurations. These dramatic transitions are described by a log-Poisson time statistics. The long time effect is a collectively adapted of the ecological network. We discuss the ecological and macroevolutionary consequences of the adaptive dynamics and briefly describe work using the Tangled Nature framework to analyse problems in economics, sociology, innovation and sustainabilityComment: Invited contribution to Focus on Complexity in European Journal of Physics. 25 page, 1 figur
    corecore