11,620 research outputs found

    Free Cooling Phase-Diagram of Hard-Spheres with Short- and Long-Range Interactions

    Get PDF
    We study the stability, the clustering and the phase-diagram of free cooling granular gases. The systems consist of mono-disperse particles with additional non-contact (long-range) interactions, and are simulated here by the event-driven molecular dynamics algorithm with discrete (short-range shoulders or wells) potentials (in both 2D and 3D). Astonishingly good agreement is found with a mean field theory, where only the energy dissipation term is modified to account for both repulsive or attractive non-contact interactions. Attractive potentials enhance cooling and structure formation (clustering), whereas repulsive potentials reduce it, as intuition suggests. The system evolution is controlled by a single parameter: the non-contact potential strength scaled by the fluctuation kinetic energy (granular temperature). When this is small, as expected, the classical homogeneous cooling state is found. However, if the effective dissipation is strong enough, structure formation proceeds, before (in the repulsive case) non-contact forces get strong enough to undo the clustering (due to the ongoing dissipation of granular temperature). For both repulsive and attractive potentials, in the homogeneous regime, the cooling shows a universal behaviour when the (inverse) control parameter is used as evolution variable instead of time. The transition to a non-homogeneous regime, as predicted by stability analysis, is affected by both dissipation and potential strength. This can be cast into a phase diagram where the system changes with time, which leaves open many challenges for future research.Comment: 22 pages, 15 figure

    Any Time? Any Place? The impact on student learning of an on-line learning environment.

    Get PDF
    Original paper can be found at: http://www.actapress.com/Content_of_Proceeding.aspx?proceedingID=292#pages Copyright ACTA Press [Full text of this paper is not available in the UHRA]An increasing number of HE institutions are adopting virtual and managed learning environments (VLEs and MLEs), which offer flexible access to on-line learning materials all day and every day. There are multiple claims about e-learning enhancing learning and teaching (eg. [1] Britain and Liber, 1999; [2]Conole, 2002; [4]Allen, 2003; [5]Littlejohn and Higginson, 2003) such as supporting active learning, facilitative rather than didactic teaching and increased student motivation but these are not pre determined outcomes. Much depends on how lecturers use the available technology and how students respond to that use. This paper reports on a research project which has evaluated the students' own experience of on-line learning at the University of Hertfordshire. Using its own institution-wide MLE (StudyNet) academic staff at the university have been able to offer students on-line access to their study material from September 2001. Activities available for students using StudyNet include participating in discussion forums, using formative assessment materials and accessing journal articles as well as viewing and downloading courseware for each of their courses. Students were invited to participate in a questionnaire and focus groups to identify the characteristics of the on-line learning environment which benefited their learning

    Soft Manifold Dynamics Behind Negative Thermal Expansion

    Full text link
    Minimal models are developed to examine the origin of large negative thermal expansion (NTE) in under-constrained systems. The dynamics of these models reveals how underconstraint can organize a thermodynamically extensive manifold of low-energy modes which not only drives NTE but extends across the Brillioun zone. Mixing of twist and translation in the eigenvectors of these modes, for which in ZrW2O8 there is evidence from infrared and neutron scattering measurements, emerges naturally in our model as a signature of the dynamics of underconstraint.Comment: 5 pages, 3 figure

    Imaging haemodynamic changes related to seizures: comparison of EEG-based general linear model, independent component analysis of fMRI and intracranial EEG

    Get PDF
    Background: Simultaneous EEG-fMRI can reveal haemodynamic changes associated with epileptic activity which may contribute to understanding seizure onset and propagation. Methods: Nine of 83 patients with focal epilepsy undergoing pre-surgical evaluation had seizures during EEG-fMRI and analysed using three approaches, two based on the general linear model (GLM) and one using independent component analysis (ICA): 1. EEGs were divided into up to three phases: early ictal EEG change, clinical seizure onset and late ictal EEG change and convolved with a canonical haemodynamic response function (HRF) (canonical GLM analysis). 2. Seizures lasting three scans or longer were additionally modelled using a Fourier basis set across the entire event (Fourier GLM analysis). 3. Independent component analysis (ICA) was applied to the fMRI data to identify ictal BOLD patterns without EEG. The results were compared with intracranial EEG. Results: The canonical GLM analysis revealed significant BOLD signal changes associated with seizures on EEG in 7/9 patients, concordant with the seizure onset zone in 4/7. The Fourier GLM analysis revealed changes in BOLD signal corresponding with the results of the canonical analysis in two patients. ICA revealed components spatially concordant with the seizure onset zone in all patients (8/9 confirmed by intracranial EEG). Conclusion: Ictal EEG-fMRI visualises plausible seizure related haemodynamic changes. The GLM approach to analysing EEG-fMRI data reveals localised BOLD changes concordant with the ictal onset zone when scalp EEG reflects seizure onset. ICA provides additional information when scalp EEG does not accurately reflect seizures and may give insight into ictal haemodynamics

    Perceived adherence of adults with cystic fibrosis and the views of the multidisciplinary team

    Get PDF

    Book Reviews

    Get PDF

    Fermi Edge Singularities in Transport through Quantum Dots

    Get PDF
    We study the Fermi-edge singularity appearing in the current-voltage characteristics for resonant tunneling through a localized level at finite temperature. An explicit expression for the current at low temperature and near the threshold for the tunneling process is presented which allows to coalesce data taken at different temperatures to a single curve. Based on this scaling function for the current we analyze experimental data from a GaAs-AlAs-GaAs tunneling device with embedded InAs quantum dots obtained at low temperatures in high magnetic fields.Comment: 12 pages, 5 figure

    Application of integrated fluid-thermal-structural analysis methods

    Get PDF
    Hypersonic vehicles operate in a hostile aerothermal environment which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary interaction. Interfacing state-of-the-art disciplinary analysis methods is not efficient, hence interdisciplinary analysis methods integrated into a single aerothermostructural analyzer are needed. The NASA Langley Research Center is developing such methods in an analyzer called LIFTS (Langley Integrated Fluid-Thermal-Structural) analyzer. The evolution and status of LIFTS is reviewed and illustrated through applications
    • 

    corecore