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Abstract. We study the stability, the clustering and the phase-diagram
of free cooling granular gases. The systems consist of mono-disperse
particles with additional non-contact (long-range) interactions, and are
simulated here by the event-driven molecular dynamics algorithm with
discrete (short-range shoulders or wells) potentials (in both 2D and
3D). Astonishingly good agreement is found with a mean field theory,
where only the energy dissipation term is modified to account for both
repulsive or attractive non-contact interactions. Attractive potentials
enhance cooling and structure formation (clustering), whereas repul-
sive potentials reduce it, as intuition suggests. The system evolution
is controlled by a single parameter: the non-contact potential strength
scaled by the fluctuation kinetic energy (granular temperature). When
this is small, as expected, the classical homogeneous cooling state is
found. However, if the effective dissipation is strong enough, structure
formation proceeds, before (in the repulsive case) non-contact forces get
strong enough to undo the clustering (due to the ongoing dissipation of
granular temperature). For both repulsive and attractive potentials, in
the homogeneous regime, the cooling shows a universal behaviour when
the (inverse) control parameter is used as evolution variable instead of
time. The transition to a non-homogeneous regime, as predicted by sta-
bility analysis, is affected by both dissipation and potential strength.
This can be cast into a phase diagram where the system changes with
time, which leaves open many challenges for future research.

1 Introduction

Granular gases are granular materials where the duration of a collision is much shorter
than the typical collision time [1–8]. This situation can be obtained by either placing
a dilute particle system in a micro-gravitational environment (e.g. during a parabolic
flight [9]), or experimentally easier, by feeding the system with energy such that a
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gaseous steady state appears (e.g. by vertically vibrating the enclosure [10,11], or by
shear [47]). For a granular gas, in the dilute limit, binary collisions dominate over
multiple collisions. Contrary to molecular gases, granular gases are dissipative. So the
continuous loss of kinetic energy due to collisions not only makes the gas cool down
but is also accompanied by collective phenomena such as cluster formation or shear
banding. Granular gases are subject to instabilities and cluster formation [3,6,10,12–
15,46], deviations from the Maxwell-Boltzmann velocity distribution [16,17], phase
transitions [18] and the formation of vortices [3].
The instability that leads to cluster formation is exclusively an effect of dissipation

during collisions for the case of hard spheres [2], and thus should be enhanced by
attractive potentials and diminished by repulsive potentials between the particles,
examples of which are electrically charged or self- gravitating particles [19,20]. Such
particle systems with attractive long-range interactions can be found, for example, in
dry powders, electrostatic coating processes, in colloidal suspensions [45], or in space.
In the latter case, huge mass distributions of interstellar dust clouds, or dense granular
rings and disks around central bodies can be affected by considerable self-gravitation
[7,21–23]. Electrically charged granular media are, in nature and industrial processes,
the rule rather than the exception (see Ref. [24] and references therein). However, in
real systems, purely repulsive potentials are rare; in general there is an attractive well
inside the repulsive barrier, which can lead to stable clustering of a granular gas [25].
This study is devoted to the behaviour of free cooling granular media as studied,

e.g. by Luding and Herrmann [6], with additional non-contact repulsive or attractive
potentials, as reported also in the PhD theses by S. Miller [13], M.-K. Müller [19],
and S. Gonzalez [48]. Here we focus on the dilute limit and the interactions are
identical for all particles, (i.e. attractive and repulsive potentials are not active at the
same time and neither are di-polar, e.g. magnetic, interactions considered [26,27]).
Simulations are compared to the mean-field theory by Müller and Luding [20,28],
which only features a modified cooling due to either repulsion or attraction. Our goal
is to understand how dissipation and non-contact interactions act together, and what
kind of dynamics is caused by the interplay of both mechanisms active at the same
time in a free cooling granular system.
In Sect. 2 we present the 2D hydrodynamic equations for our system. We introduce

the modified cooling rate due to long-range interaction in Sect. 3. We introduce our
simulation method in Sect. 4, and continue with numerical results in Sect. 5. A pre-
liminary phase-diagram is introduced in Sect. 6 and the conclusions and perspectives
of future work finalise the paper in Sect. 7.

2 Classical granular gas

In this section we review the theory of the free cooling granular gas, which is a nice
reference case since it is analytically solvable under a few simplifying assumptions, as
e.g. homogeneity that leads to the homogeneous cooling state (HCS), and is known
in the literature as Haff’s law [1].

2.1 Homogeneous free cooling theory

A free cooling granular gas in its HCS [1] dissipates kinetic energy K, as governed by
the equation

K(τ)/K(0) = (1 + τ)−2, (1)
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with the rescaled time τ = (1− r2)t/[2Dt0E ]. D is the dimension of the system, r the
coefficient of restitution, and t0E the initial Enskog collision rate [15,29],

tE =
d
√
π

2DDνgD(ν)
√
Tg/m

, (2)

with the (time-dependent) granular temperature Tg =
2
D
K(t)
N , i.e., twice the kinetic

energy per particle per degree of freedom, while T = (D/2)Tg/m is the square of the
velocity fluctuations. The diameter of the particle is d, ν is the packing fraction of
the system and m the mass of the particles. In 2D, the pair correlation function at
contact gD is given, approximately for low to moderate densities, by [30,31]

g2(ν) =
1− 7ν/16
(1− ν)2

,

and in 3D by

g3(ν) =
1− ν/2

(1− ν)3
·

Improved formulae for higher density can be found in [29,32–34].

2.2 Hydrodynamic equations

The hydrodynamic equations for a granular gas are explained in detail in [34]. For
the sake of brevity, we present a summarised version.
The continuity equation for the mass density, ρ, reads:

Dρ

Dt
+ ρ

∂ui
∂xi
= 0, (3)

where ui is the velocity in the xi direction. Momentum conservation in absence of
gravity gives:

ρ
Dui
Dt
= −∂σij

∂xj
, (4)

where σij is the stress tensor. The energy balance reads:

ρ
D

Dt
T = −σik

∂ui
∂xk
− ∂qk

∂xk
− I, (5)

where qk is the heat flux and −I = −I0 = −γ̂T the energy density dissipation rate in
the absence of any additional forces, i.e. with potential energy φ = 0. For the explicit
formulation of the coefficients see [13,15,29,34].
The HCS for a freely cooling gas is found by taking all the spatial derivatives in

the hydrodynamic equations equal to zero, leaving just one equation for the temper-
ature. The remaining fields – density and velocity in each component – remaining
homogeneous and constant: ν = ν0, u = 0 . Knowing that γ̂ ∝

√
T , and rescaling

time, the result is directly Eq. (1). This solution to the simplified system of equations
is what Haff derived from simple mechanical arguments in his seminal paper [1].
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Fig. 1. Snapshots after 7 × 105 collisions for systems with weakly attractive, neutral, and
weakly repulsive potentials, from left to right. Number of particles N = 6400, density ν =
0.0578 and dissipation r = 0.65. The colour code indicates the kinetic energy per particle,
from blue (slow), to yellow (average) and red (fast).

2.3 Cluster instability

The homogeneous cooling state, however, is not always a stable solution for the sys-
tem. For the hard-sphere potential, when the system size is large enough (at a given
dissipation), the homogeneous cooling becomes unstable and shear and clustering
modes appear in the system. For the attractive potential we expect that the clus-
ter instability will be always enhanced, and on the contrary, for the repulsive cased
reduced.
The spontaneous formation of clusters in a force-free cooling granular gas can be

understood by simple arguments [2,35,49]: consider density fluctuations in an other-
wise homogeneous granular gas. In denser regions the particles collide more frequently
than in more dilute regions, therefore, dense regions cool faster than dilute regions
and thus the local pressure decays faster as well. The resulting pressure gradient
causes a flux of particles into these regions of higher density, which leads to further
increase of the density. Hence, small fluctuations of the density are enhanced, which
leads to the formation of clusters.
Simulation and hydrodynamic equations are both non-dimensionalised, with the

particle radius and the initial granular temperature. The potential strength is scaled
by the initial temperature too and hence is dimensionless. Figure 1 shows snapshots
for the same initial conditions after 7× 105 collisions for an event-driven simulation
with non-contact interactions, where all details are given in the following sections.
We use relatively weak potentials where the ratio of the potential at contact to the
initial granular temperature is −10−5, 0, 10−5, for attractive, neutral, and repulsive
potentials, respectively. The three systems present similar clusters in shape but their
evolutions and structures are different; in particular, clusters for the attractive case
are denser than in the hard-sphere case, while for the repulsive case they are relatively
more dilute. The following section introduces the theoretical mean field approach we
will use to study the homogeneous cooling regime that occurs before the clustering.

3 Dissipation rate modification due to attraction and repulsion

Haff’s law is valid only for particles with hard-core interaction in the homogeneous
cooling state (HCS). For long range interaction, Müller and Luding [20,28] predicted,
using a modified pseudo-Liouville operator formalism, a reduced cooling rate due to
the repulsive forces and an increased rate due to attractive forces (extending the
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Fig. 2. Cooling of granular systems. Left: temperature evolution for hard-spheres (Haff’s
law, solid black), repulsive interaction and attractive interaction as given by the numerical
solution of the temperature equation (5) considering the dissipation term as in Eq. (7) for
different values of φ = 10−3, 10−2, 10−1. Right: quality factor qHaff = T/THaff for the same
long range potentials as on the left plot.

results of [36]). In their theory, the ratio of the potential at contact, φ (see Sect. 4.1),
to the temperature is the control parameter,

Γ =
|φ|
Tg
, (6)

with different sign convection as in Ref. [20], where Γ∗=φ/Tg was used in some
equations. Since the theory is a simple mean field theory, the shape of the potential
does not enter in the formulation, only its value at contact [20].
Since the cooling rate is modified, the transport coefficients of the system will be

modified accordingly. We will focus only on the change produced in the dissipation
rate, since it is the dominant term controlling the dynamics of the system. Namely,
the modified dissipation rate is:

I = I0ψ(Γ) := I0






1 : Haff

exp (−Γ) : Repulsive

(2− exp (−Γ)) : Attractive.
(7)

These modifications were derived for 3D systems by computing the average effect of
a long-range potential in the collision frequency of a granular system with a pseudo-
Liouville operator approach. We will use them directly in 2D accounting for the
different dimensionality in the pair correlation function at contact and the numerical
factors in the Enskog collision time. This is justified – and confirmed by our simula-
tions – since the integration of the Liouville operator considers collisions in a plane
due to angular momentum conservation, and hence only the prefactor is different
between 3D and 2D, while the functional form in Γ remains identical.
The homogeneous cooling with long range interaction is given by Eq. (5) taking

all the spatial derivatives equal to zero and using the modified cooling rate from
Eq. (7). This was numerically solved (we used Mathematica 8) and Fig. 2 shows the
evolution of the temperature for three cases: attractive (φ < 0), repulsive (φ > 0) and
no long-range interaction (Haff’s law, φ = 0).
Physically, Fig. 2 says the following: In Haff’s case, the dynamics of the systems

becomes slower as time advances, making the dissipation slower, and so on, as long
as the system is homogeneous [1]. In the presence of non-contact forces, the system
can have at least two different regimes: at the beginning, the thermal energy is larger
than the repulsive/attractive energy, its effect being negligible. As the system cools
down, the repulsive/attractive barrier will start to be felt, and the cooling will be
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Fig. 3. Plot of the potential energy for both continuous and discontinuous models
with attractive (left) and repulsive (right) potentials as a function of the inter-particle
distance r.

consequently modified. For the attractive force the prediction says that once the
particles start to feel the attraction they will dissipate energy faster but nevertheless
will retain the power law of the dissipation and keep the homogeneity.

4 Event-driven simulations

Event-driven simulations have been widely used to study granular gases [3,6,13–
15,29,35,49], and have shown to capture the correct behaviour when compared to
kinetic theory. In what follows we present the details of the simulation algorithm for
discrete potential simulations where the range of attraction is finite.
The simulations used to prove the theoretical predictions in Ref. [20] were done

with continuous potentials, which make them computationally expensive and time
consuming. However, the theoretical description does not consider the shape of the
potential but only its repulsive barrier. Thus we complement the original theoreti-
cal and numerical work by considering discrete potentials, as readily simulated by
event driven algorithms [13] that are typically much faster but – to the knowledge
of the authors – could not yet be parallelised as efficiently as continuous potential
simulations [13].

4.1 Discontinuous potentials

Discrete potentials, such as the hard sphere model, have an important advantage
over more complex “soft” potentials. Between collisions the spheres or molecules ex-
perience no forces and travel on ballistic trajectories. The dynamics can be solved
analytically, and the integration of the equations of motion is processed as a sequence
of events rather than by fixed, small time-steps. Current event driven molecular dy-
namics algorithms are quite advanced and allow the simulation of large systems for
the long times required to extract accurate transport properties and study, e.g., the
evolution of clusters [34,37] over many orders of magnitude.
For our simulations we use a two-level potential, see Fig. 3. The core is a hard

sphere and there is a well (or barrier) at a distance ω=1.5 (for all simulations unless
otherwise noted) and of amplitude φ. At collisions of the hard sphere cores, the relative
velocity is updated only in the normal direction according to

v′ij = vij − (1 + r) (vij · n̂ij) n̂ij , (8)
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with normal unit vector n̂ij = rij/|rij |, where rij is the distance between the particles
i and j, vij is their pre-collisional relative velocity, and the prime indicates a post-
collisional quantity. At crossing the well (barrier or sink) the particles lose or gain
energy instantaneously, depending on the direction of their relative motion, for details
see Ref. [13]. The normal velocity after crossing is:

v∗n =
√
v2n ± 2φ/m, (9)

with the normal velocity before, vn = vij ·n̂ij , and where the sign depends on whether
the potential is attractive or repulsive, whether the collision is outgoing or incoming,
and if vn is large enough to cross the well or whether the particles are reflected similar
to the hard core collision. For example, in the case of a rapidly incoming collision, in
the attractive (repulsive) case, the particles gain (lose) energy, while for an outgoing
collision this is reversed. How the sign and magnitude of this potential affect the
macroscopic evolution of a free-cooling gas is the subject of the rest of the study.

4.2 System and preparation

The simulation consists of a system of N particles in a square in 2D (or cube, in
3D) of side length L with periodic boundary conditions. Particles are mono-disperse
with diameter d and mass m. The packing fraction of the system is given by ν =
Nπd3/(6L3) in 3D and by ν = Nπd2/(4L2) in 2D. The simulations were carried out
in DynamO, a free and open-source event-driven code [38].

4.2.1 Initial conditions

The initial state is prepared as follows: (1) Start with a square lattice (2D) or a
hexagonal close packing (3D), uniform random velocities and a given φ. (2) Let the
system equilibrate, while each particle collides at least 100 times elastically, until
a homogeneous regime is reached. This is tested by looking at the density and the
distribution of velocities and confirming that they are homogeneous and very close
to Maxwellian, respectively. (3) Once thermalised, the velocities are scaled so T0 = 1
and dissipation is turned on. From here, the system is allowed to freely cool down
with a fixed particle coefficient of restitution, r.

4.2.2 Simulation units

The simulations are performed using a non-dimensionalised system. The units of
length, mass and time are set such that, d = 1, m = 1 and T0 = 1. Since we are
interested in the perturbative case, the potential, φ, is mostly varied in the range
from 10−5 to 10−3 for both, attractive and repulsive cases.

5 Numerical results

In this section we present first the results for the attractive regime, followed by the
repulsive case results.



2212 The European Physical Journal Special Topics

1 10 100

0.1

0.2

0.5

1.0

2.0

5.0

q H
af

f

Fig. 4. Temperature evolution normalised by Haff’s law with attractive potential for
r=0.99, φ=10−3, 2× 10−3, 5× 10−3, 8× 10−3, 10−4 together with Haff’s law (solid-black)
and the theoretical prediction for φ=1 (dashed magenta). The onset of cooling in the sim-
ulations is well predicted but the later cooling rate is overestimated, the magenta line runs
noticeably on top of the simulations.

5.1 Attractive forces

In this subsection we analyse data for cooling with attractive potentials of different
intensity and for different coefficients of restitution. The objective is to understand
how the dynamics is influenced by these two factors and how they interact. We focus
on the evolution of three aspects: the temperature, i.e. the degree of cooling; the
velocity distribution of the particles; and, the cluster structure and size distribution.
The initial state for different systems is always the same: the distribution of parti-

cles is homogeneous, with a Maxwellian velocity distribution, and, hence, the cooling
is well described by Haff’s law. As time passes dissipation and the attractive poten-
tial will have time to act and modify this picture giving rise to a modified cooling
dynamics and clusters.

5.1.1 Cooling

The theoretical prediction from Müller and Luding [20] for the cooling rate is a
homogeneous state with a twice as large dissipation rate. From Eq. (7), we have for
t → ∞ the temperature Tg → 0 and thus the control parameter Γ → ∞ so that
I = 2I0. Furthermore, the theory predicts that systems with different |φ| will deviate
from Haff’s law at different times; the smaller |φ| the more time it takes to deviate,
however, the functional form remains the same1.
Figure 4 shows the temperature (normalised by Haff’s law) for systems with

φ=10−3, 2 × 10−3, 5 × 10−3, 8 × 10−3, 10−4 and low dissipation so the cooling
is homogeneous. The cooling is well predicted by the theory only for the initial devia-
tion from Haff’s law but there is no agreement after that; simulations dissipate more
energy than predicted, since the theory cannot account for the inhomogeneities in
the simulations. Interestingly, the simulations do seem to follow power laws of similar
slope but with different scaling factors. This can be seen around τ ' 100 where all
the curves saturate close to qHaff ' 0.1. Due to the long time it takes to simulate the
clusterised state, we do not have data in the very long time regime.
Snapshots of the evolution for one of these low-dissipation systems can be seen

in Fig. 6. Once the attractive force is larger than the thermal fluctuations, the sys-
tem develops clusters. The structure of these clusters is typical for a cluster-cluster
aggregation process, with an exponential decay on the cluster size (see below).

1 By functional form we mean that changing the potential is equivalent to make a change
of variable in time.
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Fig. 5. Kurtosis of the velocity distribution as a function of Γ for systems with attractive
potential. Different φ collapse on the same curve as long as the coefficient of restitution is
large enough. When the coefficient of restitution goes below the critical value given by HCS,
the system develops dissipative clusters before the attractive cooling sets in. The bottom
lines correspond to an evolution as in Fig. 6, while the upper line corresponds to an evolution
as observed in Fig. 7.

5.1.2 Velocity distribution

The temperature alone is not a good indicator of the structure formation process
since it also depends on φ. A better indicator is to look for the deviation of the
velocity distribution from a Maxwellian. For this, we focus on the evolution of the
kurtosis β2 = µ4/µ22, where µi denotes the ith central moment (and µ2 in particular
the variance) as a function of Γ. When the β2 ' 3.108 the system is homogeneous.
(It must be noted that since the system has a finite number of particles, the kurtosis
does not reach the theoretical value but fluctuates near to it.) As soon as clusters
appear in the system, the velocities of the particles in the cluster are more correlated
and hence the distribution of velocities deviates from the Maxwellian towards higher
values of β2.
By studying the evolution of the system as a function of the relevant control

parameter, Γ (i.e. the strength of the non-contact potential relative to the granular
temperature, see Eq. (7)), one is looking at the same time at the temporal evolution
of the system, since Tg is decreasing with time. The advantage of looking at Γ instead
of just at the true time of the system is that different coefficients of restitution can
be compared in one plot without having to scale the temporal axis, see Fig. 2 and
Eq. (4.2) in Ref. [20].
Figure 5 shows the kurtosis during the cooling for three systems with attractive

potentials for different coefficients of restitution and potential strength, at a fixed
density. If the cooling is homogeneous (solid and dashed lines), the deviation from
the homogeneous state is due solely to the attractive potential and sets up when
Γ−1 is smaller than one. When the cooling is not homogeneous, i.e. inelastic clus-
ters appear, the system deviates from the Maxwellian distribution of velocities before
the attractive potential has time to act. This indicates that there are two mecha-
nisms of clustering present in the system: inelastic cluster formation and fractal-like
aggregation. Depending on Γ one or the other will dominate.

5.1.3 The cluster structure as a function of φ

Roughly, we divide the phenomenology in two different regimes quantified by Γ: com-
parable (Γ ∼ 1) and small (Γ ) 1) short-range effects. In the first regime, the
attractive potential is stronger than the kinetic energy and hence when particles
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Γ−1 = 1
β2 = 3.23

Γ−1 = 0.1
β2 = 3.85

Γ−1 = 0.003
β2 = 15.2

Fig. 6. Simulation snapshots at different Γ (time increases from left to right) for a consider-
able attractive potential (φ = −1) for N = 6400, ν = 0.0578 and r = 0.99. This corresponds
to a system equivalent to the lower dashed line in Fig. 5 but with a larger attractive force.

Γ−1 = 7.51
β2 = 2.9

Γ−1 = 3600
β2 = 3.4

Γ−1 = 4.7
β2 = 3.4

Fig. 7. Simulation snapshots at different Γ (time increases from left to right) for a weak
attractive potential (φ = −10−4) for N = 6400, ν = 0.0578 and r = 0.6. This correspond to
an evolution as the one depicted in Fig. 5, upper dotted line.

collide they tend to remain bound together creating clusters in a homogeneous way;
this is the fractal-like process we discussed before. The second regime is the one
where the attractive potential is weak enough to let the cluster instability appear in
the system; this is the inelastic cluster regime. However, once a cluster occurs, the
attractive force binds it together and makes the dissipation rate to be stronger than
in an equivalent cluster of hard spheres. The regime Γ* 1 is not considered, since it
resembles the limit of cluster-cluster aggregation process [39] and the dissipation has
no role to play there.
Figures 6 and 7 show snapshots of systems for decreasing Γ from left to right,

and a different coefficient of restitution and φ in each figure. In the first case, Fig. 6,
with a relatively strong potential and low dissipation, the cooling is homogeneous
until Γ ' 1 when clusters start to appear homogeneously, in a way similar to the
cluster-cluster aggregation process. Figure 7 shows snapshots for a system with an
increased dissipation, r = 0.6 and reduced attractive potential, φ = −10−4. This
gives enough time for dissipation-induced clusters to appear. Once a cluster appears,
since the relative velocity of its particles is smaller than the thermal fluctuations, the
attractive forces come into play, further increasing the dissipation inside the cluster.
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Fig. 8. Cumulative cluster size evolution as a function of cluster number Nc (number of
particles in a given cluster [6]) for a homogeneous clustering system (left) and a system with
inelastic cluster formation (right). In both plots different symbols represent different stages
in the evolution from more homogeneous (upper lines) to clusterised systems (bottom line).

Fig. 9. Cumulative cluster size evolution normalised by the largest cluster size, Nmax. Same
data as in Fig. 8. For the homogeneous case the evolution of the size distribution seems to
converge to a straight line.

The effect of this is that there is no energy left to break the cluster, and once it
forms, it will remain in the system with roughly the same shape, thus creating a
non-homogeneous clusterisation. This can be seen from the cluster size distribution
and its temporal evolution as well as from the snapshots.
Figure 8 shows the cumulative distribution function (CDF) for the evolution of the

cluster size distribution for two systems, one with homogeneous clusterisation and the
other with inelastic cluster formation. In the homogeneous case (left) the distribution
of cluster sizes is broader than in the clusterised case (right) and there are almost
an order of magnitude fewer clusters of size one for a similar maximum cluster size.
On the other hand, for the inelastic cluster formation (right), the distribution of
sizes is more heterogeneous: there are plenty of clusters of small size and a few very
large clusters. This can be seen also in the normalised plot, Fig. 9, where for the
homogeneous case the size distribution approaches a straight line, i.e. a logarithmic
function. This means that in the limit of infinite particles, there are particles of all
the sizes but the probability of finding a cluster of size n scales as 1/n. In the case of
inelastic clusters, the evolution of the size distribution does not follow a clear trend.

5.1.4 Attractive cooling systems are always unstable

Hard-spheres with attractive long-range interactions present condensation [40].
Indeed, for the elastic case, there is a region of temperatures where the liquid and gas
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phases can coexist. Consequently, for a homogeneous gas of cooling hard-spheres with
long-range attraction, the temperature eventually reaches the critical point where the
liquid phase becomes stable, and then clusters develop. These clusters will grow due
to the inelasticity of the particles to eventually reach a single cluster composed of all
the particles of the system. This is independent of the density and size of the system.
In this way, the free cooling of hard-spheres with attractive wells is always unstable
to cluster formation disregarding the size of the system. However, the clusterisation
process can be, in turn, homogeneous or inhomogeneous. It must be noted that the
term homogeneous is scale-dependent: once the energy of the system is low enough
particles merge into pairs breaking the local homogeneity, but remaining homogeneous
in larger scale that comprises several small clusters.
This makes a fundamental difference with the free cooling of hard-spheres, where

the clustering instability depends on the wavelength of the perturbation; if the system
is small enough, the cooling will be always stable. We proved this by realising small
(N ≈ 100) simulations of attractive elastic particles – the phase separation always
appeared independent of the system size. Furthermore, even for two particles, if the
temperature is low enough, they will eventually find each other and merge into a
cluster. Thus, since the phase separation does not depend on the system size, it always
appears in a free cooling system when the temperature gets low enough (Γ ≈ 1).

5.1.5 Comparison with wet granulates

Our model can be compared to the cooling of wet granulates, see Refs. [41,42], where
the authors studied cooling by using a very simple model for the interaction of two
wet grains, which only accounts for the essential features of a capillary bridge: hys-
teresis and dissipation with a well-defined energy loss. Cooling is controlled by the
probability for a bridge to break and hence logarithmically slow in the long time
limit, when a percolating structure has been formed. In contrast to theirs, our model
has the dissipation occurring at collision and conserves energy at the crossing of the
energy barrier. These two microscopic differences may have a great influence on the
macroscopic behaviour of the system. As we have seen, our model develops inelastic
clusters, contrary to Ulrich’s [42], which is homogeneous. This could be due to the
strong attraction they use as initial condition (Γ = 1). A detailed comparison of the
two models is beyond the scope of this study; however, it remains as an interesting
open question to investigate in the future.

5.1.6 Effects of higher density

For the continuous potential of Ref. [20], the cooling of denser systems was shown to be
not predicted by the dilute limit theory. This was due to the multi-particle interactions
that occur in dense systems with long-range coupling. To see if the discrete potential
reproduces this behaviour, we realised simulations analogous to the ones in Müller
and Luding’s paper [20].
One of the most notable features of the continuous potential simulations is that

the cooling is not monotonically decreasing: the system phase-separates and the geo-
metrical rearrangements produce a temporary increase in the kinetic energy of the
system. We did not observe this increase in the temperature for the simulations with
a well width of ω=1.5 despite seeing the phase separation. Thus we decided to vary
the potential width to see if this long-scale rearrangements are recovered with dis-
continuous potentials. Figure 10 shows the energy for dense systems with different
well widths ω in 3D. For this density, ν=0.157, all the systems present a phase
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Fig. 10. Cooling for dense (ν = 0.157) systems with large dissipation, r = 0.85 and different
potential width w = 1.1, 1.5, 2, 2.5, 3 but fixed φ = 0.1. As the well becomes wider, the kinetic
energy presents a peak due to large-scale reorganisation.

transition below a critical temperature: the homogeneous system becomes unstable
and the system phase-separates in a liquid and a gaseous (almost vacuum) region.
This is independent of the well width ω. However, as the well becomes wider, the
phase separation changes qualitatively, from a percolating system with big bubbles
to a system made of one big drop. For different φ the qualitative evolution is similar,
only shifted to the corresponding temperature (data not shown). The discrete system
also presents a peak in the kinetic energy if ω is large enough. In this case, the quali-
tative change from a cooling that is strictly monotonous to one that presents a peak,
occurs around ωp ≈ 2.25. It must be noted that since the strength of the potential
was kept constant, the “bump” in the temperature shifts to earlier times since the
potential energy of the system increases too when increasing ω.
In systems where the density is so large that the particles’ interactions are not

binary anymore, the theory can not predict the cooling behaviour. However, some
complex physics – as the increase in temperature due to geometrical rearrangements
and structure formation [19] – is recovered even with a discrete potential.

5.2 Repulsive forces

Intuition tells us that in the repulsive case there are two regimes depending on whether
the original hard-sphere system presents a homogeneous or non-homogeneous cooling.
For the homogeneous cooling it is obvious that the repulsive potential will not enhance
the clustering and the cooling will remain homogeneous. In the non-homogeneous case,
the repulsive forces will act against the cluster formation since they tend to separate
particles. However, one can expect that if the potential is weak enough, it will not
affect the formation of clusters, at least temporarily. Eventually, the temperature
drops under the repulsive energy and the clusters are eliminated. Quantifying this
statement is the subject of the following subsections.

5.2.1 Homogeneous cooling

Contrary to the attractive case, the mean field theory for repulsion is in great agree-
ment with the simulations. The density remains homogeneous and the temperature
follows Eq. (5). This is a strong result as there are no free parameters in the theory,
everything is determined by the potential at contact. Figure 11 shows the temperature
for two systems, in both 3D and 2D. The prediction works equally well for any φ, the
only difference is that the cooling is shifted to earlier/later times depending on the
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Fig. 11. Cooling in 3D and 2D for the homogeneous case with φ = 10−3 and φ = 10−5, left
and right respectively. The 2D system is denser (ν2D = 0.057 versus ν3D = 0.0052) and that
may cause the small difference for large τ between the theory (magenta dashed line) and the
simulations (blue dotted line). The black solid line is Haff’s cooling state for reference.

Fig. 12. Simulation snapshots at different Γ (time increases from left to right) for a weak
repulsive potential (φ = 10−4) with N = 6400, ν = 0.057 and r = 0.6. In the middle picture
the transient cluster formation can be seen; in this case, the kurtosis peaks to a high value
due to the presence of clusters.

strength of the potential. For 3D, the modification in the cooling rate fits perfectly
the cooling of the system as long as it remains homogeneous. For 2D systems there
is an appreciable deviation for long times: the theory under-predicts the cooling. The
2D system is denser (ν2D = 0.057 versus ν3D = 0.0052) and that may cause the small
difference for large τ between the theory and the simulations.

5.2.2 Non-homogeneous cooling

A more interesting case is when the system is large/dissipative enough to present
clusters. If the repulsive potential is weak enough, the time it takes to separate two
particles that are close to each other is much larger than the time the cluster formation
takes to develop, thus allowing for clusters in the system. With other words, if the
potential at the beginning is much smaller than the thermal energy, the system has
time to develop clusters before the repulsive force separates them. This is similar to
the transient cluster formation observed when there is a velocity-dependent coefficient
of restitution [35,49], and will be discussed in Sect. 5.2.3.
Figure 12 shows snapshots of the system at decreasing Γ from left to right, for

a given repulsive potential and coefficient of restitution. In the middle picture, the
transient cluster structures can be seen, while before and after (left and right) the
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Fig. 13. Kurtosis of the velocity distribution for three systems with φ = 10−3, 10−4, 10−5

(solid, dashed and dotted lines) and different coefficients of restitution r = 0.99, 0.95, and
0.9, respectively, as functions of Γ. The peak in the kurtosis at Γ−1 # 10 corresponds to
the appearance of a transient cluster as the one from Fig. 12, middle (where r is different).
Before and after the peak correspond to left and right in the same figure. As Γ approaches
unity, the velocity distribution tends to decorrelate and β2 decreases.

system is homogeneous. This corresponds to the evolution of the system represented
in Fig. 13 by the dotted blue line.
Figure 13 shows the kurtosis of the velocity distribution as a function of Γ for three

different φ and coefficient of restitution r = 0.99, 0.95, 0.9. If the repulsive potential
is weak enough and there is enough dissipation, the cluster instability can develop,
making the distribution of velocities much more correlated and hence having a larger
kurtosis (dotted line). When the thermal energy is comparable to φ, i.e. Γ ' 0.1, the
repulsive force starts to destroy the clusters and produces again a more Maxwellian
distribution of the velocities. If the dissipation is small enough, the evolution for
different coefficients of restitution in the plane Γ − β2 is similar. The fluctuations
around Γ = 1 are due to the long time it takes the system to reach lower temperatures,
and hence the evolution appears compressed when plotted as a function of Γ instead of
τ . The fluctuations look larger than in the repulsive case only because of the different
scales of plotting; for large Γ−1 both oscillate by a similar magnitude.

5.2.3 Transient cluster formations

The evolution of the free cooling system with repulsive interactions is somewhat anal-
ogous to a system with a velocity dependent coefficient of restitution, where clustering
and shearing appear transiently [35,49]. However, the mechanism that controls the
presence of clusters is the repulsive force being non-zero and the relative importance
of dissipation and repulsion. Any repulsive force between the particles will eventually
inhibit cluster formation (whereas attraction and dissipation both work in favour of
it). Since there is no external pressure to compress the system, the particles always
tend to separate from each other, where stronger dissipation slows down separa-
tion. However, this repulsion-related mechanism has a temporal scale controlled by
the intensity of the potential at contact, and thus by the available “escape kinetic
energy” Te ∝ φ/Γ. For two spheres touching, the time they need to separate a parti-
cle diameter, i.e. to not (mechanically) feel themselves anymore, is tr ' d/

√
2φ/m.

Equivalently, there is a shorter time-scale (for short-range potentials) that involves
the range of the potential tω ' ωd/

√
2φ/m where ω is the width of the well in units

of particle diameters, which the particles need to leave the range of the potential.
Consequently, unless the time of free flight for the particles becomes comparable to
or larger than tω, the repulsive potential is not able to separate the particles and the
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dynamics is dominated by the hard-sphere properties. Once the collision time-scale
of the system exceeds tω the clusters begin to disintegrate and the system eventually
returns to a homogeneous state.

5.2.4 Effects of higher density

For dilute enough systems the cooling rate becomes practically logarithmic, as is the
case for a velocity-dependent coefficient of restitution. However, if the density is high
enough, the system can reach an elastic regime due to the finite size of the system
and the consequent bound for the kinetic energy. For such systems, the evolution is
no longer independent of the coefficient of restitution, as it is the case in the dilute
regime (data not shown). Since the barrier in the discontinuous case is abrupt, when
the temperature is low enough particles cannot overcome the repulsive barrier and
stop colliding. Then particles acquire an effective radius equal to the well width and
the energy of the system remains constant.
Contrary to the attractive case, increasing the well width would be of no use in

trying to recover the physics of the continuous potentials. What is needed in this case
is to study how the inclusion of more steps in the potential approaches the continuous
case. However, that is beyond the scope of this study.

6 Phase diagram for cooling with non-contact interactions

The phenomenology for the cooling and clustering of hard spheres with short- and
long-range non-contact interactions of strength φ can be summarised as follows: for
attractive potentials the freely cooling systems always show clusters (or condensa-
tion) on the long term. If φ is small, relative to the granular temperature, the cooling
is initially homogeneous: however, due to the decrease of the granular temperature
(cooling), the relative importance of the non-contact interaction increases and even-
tually leads to clustering. On the other hand, if φ is large enough, particle pairs stick
to each other at first contact already and once pairs are bound together, the cool-
ing continues as a cluster-cluster aggregation process [34]. When a system features a
shear- or cluster-instability, it will e.g. show inelastic clusters that cool down slower
than the homogeneous hard-sphere case [6,13,15], giving rise to a different dynamics
and cluster structure. This slower cooling is not (and cannot be) predicted by the ho-
mogeneous mean-field theory that only takes into account the very weak interaction
limit case for very low densities.
For the repulsive case, the homogeneous cooling is well predicted by a simple

modification of the collision frequency, which implies a modified dissipation rate. If
the system is unstable to clustering and the initial φ is small enough, the system
will present inelastic transient clusters, in a way analogous to a granular gas with
a velocity-dependent coefficient of restitution. Figure 14 shows a preliminary, qual-
itative sketch of the phase diagram, for both attractive and repulsive potentials at
given density and system size, for different coefficients of restitution and potential
strengths.
Qualitative (time-dependent) transition lines can be drawn on the phase diagram

by computing the critical coefficient of restitution for the shear instability as a function
of φ, for a given system size and density [13]. This approach is in analogy to the
case of a velocity-dependent coefficient of restitution from Ref. [35,49], where it was
shown that classical stability analysis for the free-cooling gas [3] also holds for a time-
dependent dissipation rate. In particular, the eigen-value equation for the shear mode,
see Eq. (9) in [35,49], becomes time-dependent via the dissipation rate. Stability
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Fig. 14. Phase diagram of free cooling 2D-systems for the potential strengths, φ, where
clustering (CL), strong shear (SS), shear banding (SB), and homogeneous cooling (HC) are
reported, for different coefficients of restitution, r, with N =6400 and ν=0.057. For the
corresponding hard-sphere systems (points), the classical critical coefficient of restitution
is rc=0.97, where the upper and lower lines meet. The lines are the transition curves for
Tg = 10

−3 (red), 10−4 (green), and 10−5, (blue). Since the scale is logarithmic, we artificially
cut-off at |φ| = 10−6 and set the horizontal axis at φ=0; hence not all the curves reach the
critical value and thus do not match exactly when crossing from positive to negative φ. The
arrows indicate the direction in which the transition lines sweep through the system (towards
smaller |φ|).

analysis for the critical coefficient of restitution of the shear mode in the dilute limit
provides [13,49]: 1− r2 = (1− r2c )/ψ(Γ∗) = [α/ψ(Γ∗)]k2min , where rc and α represent
the classical result, involving a combination of shear-viscosity and dissipation rate
pre-factors, valid when ψ(Γ∗ = 0) = 1, with ψ defined in Eq. (7), and kmin being the
smallest wave number possible (the largest wave-length Lmax = 2π/kmin is the system
size). Due to the additional non-contact force, the critical coefficient of restitution will
change, since it depends on time via ψ(Γ∗), where we have neglected a possible time-
dependence of α. The transition line in the plane r − Γ∗ is then:

Γ∗c = Γc = log

(
1− r2
1− r2c

)
, (10)

in the repulsive case, for r < rc, while it is:

Γ∗c = −Γc = − log
(

1− r2
1− 2r2 + r2c

)
, (11)

in the attractive case, for r > rc. Here, rc is the classical result for the critical
coefficient of restitution in the given system without non-contact forces.
The phase space can now be represented in two ways: (1) in the r − φ plane,

where our simulations are fixed points, but the transition line sweeps downwards with
time, i.e. during the evolution (cooling) of the system; or (2) in the r−Γ∗ plane, where
the transition lines are invariant, but the systems drift from small to large Γ = |Γ∗|
during cooling.
(1) Figure 14 shows a phase diagram for different systems with fixed r and φ, to-

gether with the predicted transition lines φc=Γ∗cTg(t), for different granular temper-
atures Tg, sweeping from large to small |φ| during cooling; the (stable) homogeneous
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Fig. 15. Phase diagram of free cooling systems for the control parameter Γ∗ and coefficient
of restitution, r, with rc = 0.9 and 0.6, from Eqs. (10) and (11).

cooling state is predicted to the top and right of the transition lines, as qualitatively
well reproduced by the simulations.
In the repulsive case, a given system can be initially in the stable (top-right)

or unstable (bottom-left) zone. Since the transition lines sweep (downwards) towards
smaller φ, the former systems will remain stable, whereas the latter will become stable
eventually. In the attractive case the unstable domain is larger; a system originally in
the stable zone (right, close to rc) will eventually become unstable, since the transition
line sweeps (upwards) towards smaller |φ|, for φ < 0.
In summary, this renders repulsive freely cooling systems stable on the long term,

whereas attractive systems are expected to become unstable eventually.
(2) Figure 15 shows the r−Γ∗ phase-space where the transition lines are invariant

and a freely cooling system moves across them, as indicated by the arrows. A repulsive
system, initially in the unstable zone will drift upwards and become eventually stable,
whereas an attractive system that could be initially stable will drift downwards and
eventually get unstable.
Other, more realistic systems, with a time- or velocity-dependent coefficient of

restitution [35,43,44,49] will also involve an additional side-wards drift of their state
(data not shown), whereas driven systems in a steady state would be truly stationary
in phase space (data not shown).
As final note, each system will require a certain time to react to the hydrodynamic

instability of its present state in phase space. When systems drift, there can be a
considerable delay time, e.g. when established clusters are expected to be destroyed
in the stable region. More realistic systems might display transition lines that are not
just functions of r anymore but could allow multiple crossing points; however, this
goes beyond the scope of this study.

7 Conclusions and outlook

The free cooling of granular matter with dissipation and – in addition – non-
contact attractive or repulsive interactions has been studied by means of event-driven
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simulations and mean-field hydrodynamic theory. The systems homogeneous cooling
behaviour was compared to the modified mean-field theory [20], where the corrected
dissipation rate involves the ratio of the interaction potential strength and the granu-
lar temperature as the only new control parameter. This theory was developed for 3D;
however, we have shown how to apply it for 2D systems. Simulations with discrete
potentials confirmed the theoretical predictions for low densities in the repulsive case
(in 2D and 3D) but fell short for the attractive case where non-linear effects are more
important.
In the present study, in contrast to previous studies [19,20], we used different short-

ranged well- or step-potentials [13,38] to complement the simulations with continuous
long-range potentials. Remarkably, the theory results that are used here do not have
a potential range- or shape-parameter, only the potential magnitude is needed as
parameter – at least for small Γ; since the theory was already tested with the longest
range potential (1/r) one can imagine [20], we consider the present results valid for
both short- and long-range potentials. This independence on shape and range was
astonishing to the authors and suggests future research towards better theories that
do consider shape and/or range of the interactions.
For attractive potentials the formation of structures, i.e., clusters, is strongly en-

hanced, as is expected from the results on condensation of elastic hard-spheres with
attractive potentials [19,40]; this effect is not predicted by the simple homogeneous
mean-field theory. The geometry of the resulting clusters is determined by a complex
interplay between dissipation, density, potential strength and range, and the granular
temperature intensity that changes during time due to the ongoing cooling.
For repulsive potentials, the theory predicts consistently the cooling behaviour

for low dissipation and density as long as the system is homogeneous. This confirms
once again that discrete potentials are a good approximation to smooth, continuous
interaction potentials in this regime and capture much of the interesting physics
of particulate systems. For larger dissipation and weak repulsion we have found that
transient clusters appear in the system in a way analogous to the cooling of grains with
a velocity dependent coefficient of restitution [35,43,44,49]. This is expected since the
dissipation rate in the hydrodynamic equations have a similar time dependence for
the free cooling in either case.
Finally, all results point to the great importance of some microscopic parameters

in the macroscopic evolution of granular systems and the complex interplay of
different micro-mechanic mechanisms that lead to macroscopic, hydrodynamic
phenomena. In particular, we showed that the long-time dynamics for a system with
both dissipation and non-contact interactions is not simply the superposition of both
effects but depends in a more complex way on the particular evolution of the system,
its initial state, and the particular parameters that describe it.

Future work: The present study started from dissipative systems and added non-
contact interactions as new ingredient to predict a phase-diagram that encompasses
both mechanisms and their interplay (in the weak interaction limit). A very interesting
situation, not considered here, is self-gravity that can lead to clusters without any
dissipation, so that dissipation represents a “perturbation”, which surely affects the
system evolution, as relevant e.g. in astro-physics, and will complement the phase
space in the limit r → 1.
Future work on earth should consider also mixtures of different species of parti-

cles with different non-contact interactions as well as more realistic potential-shapes
[25]; for example, magnetic (di-polar) interactions [26,27] as can be realized experi-
mentally e.g. by charge- and sterically stabilized colloidal suspensions [45]. For such
potentials and for stronger interactions, relative to the fluctuations, it will be neces-
sary to extended the simple theory used here. The present results are the basis for
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future research towards a more complete theory for long-range interactions in aerosols
or suspensions.
Eventually, also driven systems should be considered, see Refs. [11,26,47] and

references therein, since they can feature a steady-state in time and should lead to a
stable phase-diagram instead of the time-dependent one observed above for cooling
granular media.
The understanding of the system evolution in its phase space combined with an

experimental control of the interaction strength and dissipation (e.g. by changing the
surface- or solvent-properties) will allow to better control and optimise engineering
processes by controlling at will either the transition lines or the system position in
phase space.
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