37 research outputs found

    The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer

    Get PDF
    Measurements of atmospheric turbulence made over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) are used to determine the limits of applicability of Monin-Obukhov similarity theory (in the local scaling formulation) in the stable atmospheric boundary layer. Based on the spectral analysis of wind velocity and air temperature fluctuations, it is shown that, when both of the gradient Richardson number, Ri, and the flux Richardson number, Rf, exceed a 'critical value' of about 0.20 - 0.25, the inertial subrange associated with the Richardson-Kolmogorov cascade dies out and vertical turbulent fluxes become small. Some small-scale turbulence survives even in this supercritical regime, but this is non-Kolmogorov turbulence, and it decays rapidly with further increasing stability. Similarity theory is based on the turbulent fluxes in the high-frequency part of the spectra that are associated with energy-containing/flux-carrying eddies. Spectral densities in this high-frequency band diminish as the Richardson-Kolmogorov energy cascade weakens; therefore, the applicability of local Monin-Obukhov similarity theory in stable conditions is limited by the inequalities Ri < Ri_cr and Rf < Rf_cr. However, it is found that Rf_cr = 0.20 - 0.25 is a primary threshold for applicability. Applying this prerequisite shows that the data follow classical Monin-Obukhov local z-less predictions after the irrelevant cases (turbulence without the Richardson-Kolmogorov cascade) have been filtered out.Comment: Boundary-Layer Meteorology (Manuscript submitted: 16 February 2012; Accepted: 10 September 2012

    Control of Toxoplasma reactivation by rescue of dysfunctional CD8+ T-cell response via PD-1–PDL-1 blockade

    No full text
    In this study, we document that Toxoplasma gondii differentiation and reactivation are mediated by systemic CD8 T-cell dysfunction during chronic infection. We demonstrate that CD8+ T-cell exhaustion occurs despite control of parasitemia during early-chronic toxoplasmosis. During later phases, these cells become exhausted, leading to parasite reactivation and mortality. Concomitant with increased CD8+ T-cell apoptosis and decreased effector response, this dysfunction is characterized by a graded elevation in expression of inhibitory receptor PD-1 on these cells in both lymphoid and nonlymphoid tissue. Blockade of the PD-1–PDL-1 pathway reinvigorates this suboptimal CD8+ T-cell response, resulting in control of parasite reactivation and prevention of mortality in chronically infected animals. To the best of our knowledge, this report is unique in showing that exposure to a persistent pathogen despite initial control of parasitemia can lead to CD8+ T-cell dysfunction and parasite reactivation

    Enhanced Air–Sea Exchange of Heat and Carbon Dioxide Over a High Arctic Fjord During Unstable Very-Close-to-Neutral Conditions

    No full text
    Eddy-covariance measurements made in the marine atmospheric boundary layer above a high Arctic fjord (Adventfjorden, Svalbard) are analyzed. When conditions are unstable, but close to neutral −0.1 &amp;lt; z/L &amp;lt; 0, where z is the height, and L is the Obukhov length, the exchange coefficient for sensible heat CH is significantly enhanced compared with that expected from classical surface-layer theory. Cospectra of the vertical velocity component (w) and temperature (T) reveal that a high-frequency peak develops at f ≈ 1 Hz for z/L &amp;gt; − 0.15. A quadrant analysis reveals that the contribution from downdrafts to the vertical heat flux increases as conditions become close to neutral. These findings are the signature of the evolving unstable very-close-to-neutral (UVCN) regime previously shown to enhance the magnitude of sensible and latent heat fluxes in the marine surface layer over the Baltic Sea. Our data reveal the significance of the UVCN regime for the vertical flux of the carbon dioxide (CO2) concentration (C). The cospectrum of w and C clearly shows how the high-frequency peak grows in magnitude for z/L &amp;gt; − 0.15, while the high-frequency peak dominates for z/L &amp;gt; − 0.02. As found for the heat flux, the quadrant analysis of the CO2 flux shows a connection between the additional small-scale turbulence and downdrafts from above. In contrast to the vertical fluxes of sensible and latent heat, which are primarily enhanced by the very different properties of the air from aloft (colder and drier) during UVCN conditions, the increase in the air–sea transfer of CO2 is possibly a result of the additional small-scale turbulence causing an increase in the water-side turbulence. The data indicate an increase in the gas-transfer velocity for CO2 for z/L &amp;gt; − 0.15 but with a large scatter. During the nearly 2 months of continuous measurements (March–April 2013), as much as 36% of all data are associated with the stability range −0.15 &amp;lt; z/L &amp;lt; 0, suggesting that the UVCN regime is of significance in the wintertime Arctic for the air–sea transfer of heat and possibly also CO2
    corecore