42 research outputs found

    Perturbative framework for the pi(+)pi(-) atom

    Full text link
    The perturbative framework is developed for the calculation of the pi(+)pi(-) atom characteristics on the basis of the field-theoretical Bethe-Salpeter approach. A closed expression for the first-order correction to the pi(+)pi(-) atom lifetime has been obtained.Comment: 8 pages, LaTeX-fil

    A Complete Version of the Glauber Theory for Elementary Atom - Target Atom Scattering and Its Approximations

    Full text link
    A general formalism of the Glauber theory for elementary atom (EA) - target atom (TA) scattering is developed. A second-order approximation of its complete version is considered in the framework of the optical-model perturbative approach. A `potential' approximation of a second-order optical model is formulated neglecting the excitation effects of the TA. Its accuracy is evaluated within the second-order approximation for the complete version of the Glauber EA-TA scattering theory.Comment: PDFLaTeX, 10 pages, no figures; an updated versio

    Scalar mesons moving in a finite volume and the role of partial wave mixing

    Get PDF
    Phase shifts and resonance parameters can be obtained from finite-volume lattice spectra for interacting pairs of particles, moving with nonzero total momentum. We present a simple derivation of the method that is subsequently applied to obtain the pi pi and pi K phase shifts in the sectors with total isospin I=0 and I=1/2, respectively. Considering different total momenta, one obtains extra data points for a given volume that allow for a very efficient extraction of the resonance parameters in the infinite-volume limit. Corrections due to the mixing of partial waves are provided. We expect that our results will help to optimize the strategies in lattice simulations, which aim at an accurate determination of the scattering and resonance properties.Comment: 19 pages, 12 figure

    Working group on ππ\pi\pi and π\piN interactions - Summary

    Full text link
    This is the summary of the working group on ππ\pi\pi and π\piN interactions of the Chiral Dynamics Workshop in Mainz, September 1-5, 1997. Each talk is represented by an extended one page abstract. Some additional remarks by the convenors are addedComment: 20 pp, LaTeX2e, uses epsf, 1 fi

    Exclusive Nonleptonic Decays of Bottom and Charm Baryons in a Relativistic Three-Quark Model: Evaluation of Nonfactorizing Diagrams

    Get PDF
    Exclusive nonleptonic decays of bottom and charm baryons are studied within a relativistic three-quark model with a Gaussian shape for the momentum dependence of the baryon-three-quark vertex. We include factorizing as well as nonfactorizing contributions to the decay amplitudes. For heavy-to-light transitions Q -> q u d the total contribution of the nonfactorizing diagrams amount up to approximately 60% of the factorizing contributions in amplitude, and up to approximately 30% for b -> c u d transitions. We calculate the rates and the polarization asymmetry parameters for various nonleptonic decays and compare them to existing data and to the results of other model calculations.Comment: 49 pages, LaTeX-fil

    Unitarized Chiral Perturbation Theory in a finite volume: scalar meson sector

    Get PDF
    We develop a scheme for the extraction of the properties of the scalar mesons f0(600), f0(980), and a0(980) from lattice QCD data. This scheme is based on a two-channel chiral unitary approach with fully relativistic propagators in a finite volume. In order to discuss the feasibility of finding the mass and width of the scalar resonances, we analyze synthetic lattice data with a fixed error assigned, and show that the framework can be indeed used for an accurate determination of resonance pole positions in the multi-channel scattering.Comment: 15 pages, 17 figure

    Solving integral equations in η3π\eta\to 3\pi

    Full text link
    A dispersive analysis of η3π\eta\to 3\pi decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: i) The angular averages of the amplitudes need to be performed along a complicated path in the complex plane. ii) The averaged amplitudes develop singularities along the path of integration in the dispersive representation of the full amplitudes. It is a delicate affair to handle these singularities properly, and independent checks of the obtained solutions are demanding and time consuming. In the present article, we propose a solution method that avoids these difficulties. It is based on a simple deformation of the path of integration in the dispersive representation (not in the angular average). Numerical solutions are then obtained rather straightforwardly. We expect that the method also works for ω3π\omega\to 3\pi.Comment: 11 pages, 10 Figures. Version accepted for publication in EPJC. The ancillary files contain an updated set of fundamental solutions. The numerical differences to the former set are tiny, see the READMEv2 file for detail

    Dynamical coupled-channel approaches on a momentum lattice

    Get PDF
    Dynamical coupled-channel approaches are a widely used tool in hadronic physics that allow to analyze different reactions and partial waves in a consistent way. In such approaches the basic interactions are derived within an effective Lagrangian framework and the resulting pseudo-potentials are then unitarized in a coupled-channel scattering equation. We propose a scheme that allows for a solution of the arising integral equation in discretized momentum space for periodic as well as twisted boundary conditions. This permits to study finite size effects as they appear in lattice QCD simulations. The new formalism, at this stage with a restriction to S-waves, is applied to coupled-channel models for the sigma(600), f0(980), and a0(980) mesons, and also for the Lambda(1405) baryon. Lattice spectra are predicted.Comment: 7 pages, 4 figure
    corecore