1,091 research outputs found
Photospheric properties and fundamental parameters of M dwarfs
M dwarfs are an important source of information when studying and probing the
lower end of the Hertzsprung-Russell (HR) diagram, down to the hydrogen-burning
limit. Being the most numerous and oldest stars in the galaxy, they carry
fundamental information on its chemical history. The presence of molecules in
their atmospheres, along with various condensed species, complicates our
understanding of their physical properties and thus makes the determination of
their fundamental stellar parameters more challenging and difficult. The aim of
this study is to perform a detailed spectroscopic analysis of the
high-resolution H-band spectra of M dwarfs in order to determine their
fundamental stellar parameters and to validate atmospheric models. The present
study will also help us to understand various processes, including dust
formation and depletion of metals onto dust grains in M dwarf atmospheres. The
high spectral resolution also provides a unique opportunity to constrain other
chemical and physical processes that occur in a cool atmosphere The
high-resolution APOGEE spectra of M dwarfs, covering the entire H-band, provide
a unique opportunity to measure their fundamental parameters. We have performed
a detailed spectral synthesis by comparing these high-resolution H-band spectra
to that of the most recent BT-settl model and have obtained fundamental
parameters such as effective temperature, surface gravity, and metallicity
(Teff, log g and [Fe/H]) respectively.Comment: 15 pages, 10 figures, accepted for publication in A&
The Effective temperature scale of M dwarfs from spectral synthesis
We present a comparison of low-resolution spectra of 60 stars covering the
whole M-dwarf sequence. Using the most recent PHOENIX BT-Settl stellar model
atmospheres (see paper by F. Allard, in this book) we do a first quantitative
compari- son to our observed spectra in the wavelength range 550-950 nm. We
perform a first confrontation between models and observations and we assign an
effective tempera- tures to the observed M-dwarfs. Teff-spectral type relations
are then compared with the published ones. This comparison also aims at
improving the models' opacities.Comment: To be published in the on-line version of the Proceedings of Cool
Stars 16 (ASP Conference Series) New version with bibliography correcte
Progress in Modeling Very Low Mass Stars, Brown Dwarfs, and Planetary Mass Objects
We review recent advancements in modeling the stellar to substellar
transition. The revised molecular opacities, solar oxygen abundances and cloud
models allow to reproduce the photometric and spectroscopic properties of this
transition to a degree never achieved before, but problems remain in the
important M-L transition characteristic of the effective temperature range of
characterizable exoplanets. We discuss of the validity of these classical
models. We also present new preliminary global Radiation HydroDynamical M
dwarfs simulations.Comment: Submitted to Mem. S. A. It. Supp
Detection and characterisation of two VLM binaries: LP 1033-31 and LP 877-72
Using the high-resolution near-infrared adaptive optics imaging from the NaCo
instrument at the Very Large Telescope, we report the discovery of a new binary
companion to the M-dwarf LP 1033-31 and also confirm the binarity of LP 877-72.
We have characterised both the stellar systems and estimated the properties of
their individual components. We have found that LP 1033-31 AB with the spectral
type of M4.5+M4.5 has a projected separation of 6.71.3 AU. Whereas with
the spectral type of M1+M4, the projected separation of LP 877-72 AB is
estimated to be 45.80.3 AU. The binary companions of LP 1033-31 AB are
found to have similar masses, radii, effective temperatures, and log with
the estimated values of 0.200.04 , 0.220.03
, 3200 K, 5.060.04. However, the primary of LP 877-72 AB
is found to be twice as massive as the secondary with the derived mass of
0.5200.006 . The radius and log for the primary of LP
877-72 AB are found to be 1.8 and 0.95 times that of the secondary component
with the estimated values of 0.4920.011 and
4.7680.005, respectively. With an effective temperature of 375015 K,
the primary of LP 877-72 AB is also estimated to be 400 K hotter than the
secondary component. We have also estimated the orbital period of LP 1033-31
and LP 877-72 to be 28 and 349 yr, respectively. The binding
energies for both systems are found to be 10 erg, which signifies
both systems are stable.Comment: 14 pages, 6 figures, accepted for publication in MNRA
The Effective Temperature Scale of M dwarfs
Despite their large number in the Galaxy, M dwarfs remain elusive objects and
the modeling of their photospheres has long remained a challenge (molecular
opacities, dust cloud formation). Our objectives are to validate the BT-Settl
model atmospheres, update the M dwarf T eff -spectral type relation, and find
the atmospheric parameters of the stars in our sample. We compare two samples
of optical spectra covering the whole M dwarf sequence with the most recent
BT-Settl synthetic spectra and use a \c{hi}2 minimization technique to
determine Teff . The first sample consists of 97 low-resolution spectra
obtained with NTT at La Silla Observatory. The second sample contains 55
mid-resolution spectra obtained at the Siding Spring Observatory (SSO). The
spectral typing is realized by comparison with already classified M dwarfs. We
show that the BT-Settl synthetic spectra reproduce the slope of the spectral
energy distribution and most of its features. Only the CaOH band at 5570{\AA}
and AlH and NaH hydrides in the blue part of the spectra are still missing in
the models. The Teff-scale obtained with the higher resolved SSO 2.3 m spectra
is consistent with that obtained with the NTT spectra. We compare our Teff
scale with those of other authors and to published isochrones using the
BT-Settl colors. We also present relations between effective temperature,
spectral type and colors of the M dwarfs.Comment: 16 pages, 6 figures, accepted for publication in A&
Exploring the short-term variability of H and H emissions in a sample of M dwarfs
The time scales of variability in active M dwarfs can be related to their
various physical parameters. Thus, it is important to understand such
variability to decipher the physics of these objects. In this study, we have
performed the low resolution (5.7\AA) spectroscopic monitoring of 83 M
dwarfs (M0-M6.5) to study the variability of H / H emissions;
over the time scales from 0.7 to 2.3 hours with a cadence of 3-10
minutes. Data of a sample of another 43 late-type M dwarfs (M3.5-M8.5) from the
literature are also included to explore the entire spectral sequence. 53 of the
objects in our sample (64\%) show statistically significant short-term
variability in H. We show that this variability in 38 of them are most
likely to be related to the flaring events. We find that the early M dwarfs are
less variable despite showing higher activity strengths
(L/L \& L/L), which saturates around
10 for M0-M4 types. Using archival photometric light curves from
TESS and Kepler/K2 missions, the derived chromospheric emission (\ha and \hb
emission) variability is then explored for any plausible systematics with
respect to their rotation phase. The variability indicators clearly show higher
variability in late-type M dwarfs (M5-M8.5) with shorter rotation periods (2
days). For 44 sources, their age has been estimated using StarHorse project and
possible correlations with variability have been explored. The possible causes
and implications for these behaviors are discussed.Comment: There are 35 pages including 18 pages of supplementary material. The
manuscript is accepted for publication in MNRA
A high resolution spectroscopic atlas of M subdwarfs - Effective temperature and metallicity
Context. M subdwarfs are metal poor and cool stars. They are important probes
of the old galactic populations. However, they remain elusive due to their low
luminosity. Observational and modeling efforts are required to fully understand
their physics and to investigate the effects of metallicity in their cool
atmospheres.
Aims. We perform a detailed study of a sample of subdwarfs to determine their
stellar parameters and constrain the stat-of-the art atmospheric models.
Methods. We present UVES/VLT high resolution spectra of three late-K
subdwarfs and 18 M subdwarfs. Our atlas covers the optical region from 6400 AA
up to the near infrared at 8900 AA. We show spectral details of cool
atmospheres at very high resolution (R= 40 000) and compare with synthetic
spectra computed from the recent BT-Settl atmosphere models.
Results. Our comparison shows that molecular features (TiO, VO, CaH), and
atomic features (Fe I, Ti I, Na I, K I) are well fitted by current models. We
produce an effective temperature versus spectral type relation all over the
subdwarf spectral sequence. Thanks to the high resolution of our spectra, we
perform a detailed comparison of line profiles of individual elements such as
Fe I, Ca II, Ti I, and are able to determine accurate metallicities of these
stars. These determinations contribute to calibrate the relation between
metallicity and molecular band strength indices from low-resolution spectra.
Conclusions. This work shows that the new generation of models are able to
reproduce various spectral features of M subdwarfs. Working with these high
resolution spectra allowed us to disentangle the atmospheric parameters
(effective temperature, gravity, metallicity), which is not possible when using
low resolution spectroscopy or photometry.Comment: 15 pages, 20 figures, 2 tables, accepted for publication in Astronomy
and Astrophysic
Genetic Variability, Diversity and Interrelationship for Twelve Grain Minerals in 122 Commercial Pearl Millet Cultivars in India
Pearl millet contributes to the major source of dietary calories and essential micronutrients intake among rural
populations in certain regions of India as its grains are more nutritious than other cereals. The aims of this investigation were to
profile cultivar nutrition, diversity and interrelationship for grain minerals (Ca, K, Mg, Na, P, S, Cu, Fe, Mn, Zn, Mo and Ni)
among 122 pearl millet hybrids and open-pollinated varieties in India. Trials were evaluated in randomized complete block
design with three replications at two locations (Patancheru and Mandor) representing two major cultivation zones. The grain
minerals in cultivars exhibited two- to- four-fold variation. Positive and significant correlations were noted among different
minerals. A higher magnitude of positive and significant association between Fe and Zn (r = 0.71, P\0.01) and with other
minerals suggested the existence of greater genetic potential for the concurrent improvement of Fe and Zn without lowering
the other grain minerals in pearl millet. The first two principal components accounted for 49% of variation. Euclidian distancebased
cluster analysis grouped the 122 cultivars into seven clusters. Cluster I had higher mean for Fe (56 mg kg-1) and Zn
(49 mg kg-1), in which ICTP 8203, Ajeet 38, Sanjivani 222,PAC 903 and 86 M86 were identified as rich sources of iron, zinc
and calcium with considerable levels of other nutrients. About 65% of cultivars for iron and 100% of cultivars for zinc have met
the minimum standards set forth by the Indian Council of Agricultural Research. This indicates the feasibility of breeding
nutrient-rich hybrids with competitive yields through mainstreaming in future
The effective temperature scale of M dwarfs
Context. Despite their large number in the Galaxy, M dwarfs remain elusive objects and the modeling of their photosphere has long remained a challenge (molecular opacities, dust cloud formation). Aims. Our objectives are to validate the BT-Settl model at
- …