14,714 research outputs found

    Multidimensional Worldline Instantons

    Get PDF
    We extend the worldline instanton technique to compute the vacuum pair production rate for spatially inhomogeneous electric background fields, with the spatial inhomogeneity being genuinely two or three dimensional, both for the magnitude and direction of the electric field. Other techniques, such as WKB, have not been applied to such higher dimensional problems. Our method exploits the instanton dominance of the worldline path integral expression for the effective action.Comment: 22 pages, 13 figure

    Polarization of the electron and positron produced in combined Coulomb and strong laser fields

    Full text link
    The process of e+ee^+e^- production in the superposition of a Coulomb and a strong laser field is considered. The pair production rate integrated over the momentum and summed over the spin projections of one of the particles is derived exactly in the parameters of the laser field and in the Born approximation with respect to the Coulomb field. The case of a monochromatic circularly polarized laser field is considered in detail. A very compact analytical expression of the pair production rate and its dependence on the polarization of one of the created particles is obtained in the quasiclassical approximation for the experimentally relevant case of an undercritical laser field. As a result, the polarization of the created electron (positron) is derived.Comment: 16 pages, no figure

    How to make a mature accreting magnetar

    Get PDF
    Several candidates for accreting magnetars have been proposed recently by different authors. Existence of such systems contradicts the standard magnetic field decay scenario where a large magnetic field of a neutron star reaches \lesssim few×1013\times 10^{13}G at ages 1\gtrsim 1 Myr. Among other sources, the high mass X-ray binary 4U0114+65 seems to have a strong magnetic field around 101410^{14} G. We develop a new Bayesian estimate for the kinematic age and demonstrate that 4U0114+65 has kinematic age 2.4-5 Myr (95%95\% credential interval) since the formation of the neutron star. We discuss which conditions are necessary to explain the potential existence of magnetars in accreting high-mass binaries with ages about few Myrs and larger. Three necessary ingredients are: the Hall attractor to prevent rapid decay of dipolar field, relatively rapid cooling of the crust in order to avoid Ohmic decay due to phonons, and finally, low values of the parameter QQ to obtain long Ohmic time scale due to impurities. If age and magnetic field estimates for proposed accreting magnetars are correct, then these systems set the strongest limit on the crust impurity for a selected sample of neutron stars and provide evidence in favour of the Hall attractor.Comment: 8 pages, 3 figures, accepted to MNRAS on September 2

    Atomic coherence and interference phenomena in resonant nonlinear optical interactions

    Get PDF
    Interference effects in quantum transitions, giving rise to amplification without inversion, optical transparency and to enhancements in nonlinear optical frequency conversions are considered. Review of the relevant early theoretical and experimental results is given. The role of relaxation processes, spontaneous cascade of polarizations, local field effects, Doppler-broadening, as well as specific features of the interference in the spectral continuum are discussed.Comment: 13 pages, 13 eps figures, review paper, Proceedings of the 15th International Conference on Nonlinear Optics - ICONO'9

    Hyperbolic carbon nanoforest for phase matching of ordinary and backward electromagnetic waves: second harmonic generation

    Full text link
    We show that deliberately engineered dispersive metamaterial slab can enable the co-existence and phase matching of contra-propagating ordinary fundamental and extraordinary backward second harmonic surface electromagnetic modes. Energy flux and phase velocity are contra-directed in the backward waves which is the phenomenon that gives rise to unique nonlinear optical propagation processes. We show that frequencies, phase, and group velocities, as well as nanowaveguide losses inherent to the electromagnetic modes supported by such metamaterial, can be tailored to maximize conversion of frequencies and to reverse propagation direction of the generated wave. Such a possibility, which is of paramount importance for nonlinear photonics, is proved with a numerical model of the hyperbolic metamaterial made of carbon nanotubes standing on the metal surface. Extraordinary properties of the backward-wave second harmonic generation in the reflection direction and of the corresponding frequency doubling metareflector in the THz are investigated with a focus on the pulsed regime.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with arXiv:1602.0249
    corecore