11,428 research outputs found
Microarray gene expression profiling of neural tissues in bovine spastic paresis
Abstract: Background: Bovine Spastic Paresis (BSP) is a neuromuscular disorder which affects both male and female cattle. BSP is characterized by spastic contraction and overextension of the gastrocnemious muscle of one or both limbs and is associated with a scarce increase in body weight. This disease seems to be caused by an autosomal and recessive gene, with incomplete penetration, although no genes clearly involved with its onset have been so far identified. We employed cDNA microarrays to identify metabolic pathways affected by BSP in Romagnola cattle breed. Investigation of those pathways at the genome level can help to understand this disease.
Results: Microarray analysis of control and affected individuals resulted in 268 differentially expressed genes. These genes were subjected to KEGG pathway functional clustering analysis, revealing that they are predominantly involved in Cell Communication, Signalling Molecules and Interaction and Signal Transduction, Diseases and Nervous System classes. Significantly enriched KEGG pathway's classes for the differentially expressed genes were calculated; interestingly, all those significantly under-expressed in the affected samples are included in Neurodegenerative Diseases. To identify genome locations possibly harbouring gene(s) involved in the disease, the chromosome distribution of the differentially expressed genes was also investigated.
Conclusions: The cDNA microarray we used in this study contains a brain library and, even if carrying an incomplete transcriptome representation, it has proven to be a valuable tool allowing us to add useful and new information to a poorly studied disease. By using this tool, we examined nearly 15000 transcripts and analysed gene pathways affected by the disease. Particularly, our data suggest also a defective glycinergic synaptic transmission in the development of the disease and an alteration of calcium signalling proteins. We provide data to acquire knowledge of a genetic disease for which literature still presents poor results and that could be further and specifically analysed in the next future. Moreover this study, performed in livestock, may also harbour molecular information useful for understanding human diseases
Results from a Second RXTE Observation of the Coma Cluster
The RXTE satellite observed the Coma cluster for 177 ksec during November and
December 2000, a second observation motivated by the intriguing results from
the first 87 ksec observation in 1996. Analysis of the new dataset confirms
that thermal emission from isothermal gas does not provide a good fit to the
spectral distribution of the emission from the inner 1 degree radial region.
While the observed spectrum may be fit by emission from gas with a substantial
temperature gradient, it is more likely that the emission includes also a
secondary non-thermal component. If so, non-thermal emission comprises ~8% of
the total 4--20 keV flux. Interpreting this emission as due to Compton
scattering of relativistic electrons (which produce the known extended radio
emission) by the cosmic microwave background radiation, we determine that the
mean, volume-averaged magnetic field in the central region of Coma is B =
0.1-0.3 microgauss.Comment: 10 pages, 1 figure; APJ, in pres
Positive Measure Spectrum for Schroedinger Operators with Periodic Magnetic Fields
We study Schroedinger operators with periodic magnetic field in Euclidean
2-space, in the case of irrational magnetic flux. Positive measure Cantor
spectrum is generically expected in the presence of an electric potential. We
show that, even without electric potential, the spectrum has positive measure
if the magnetic field is a perturbation of a constant one.Comment: 17 page
Phase Separation and Charge-Ordered Phases of the d = 3 Falicov-Kimball Model at T>0: Temperature-Density-Chemical Potential Global Phase Diagram from Renormalization-Group Theory
The global phase diagram of the spinless Falicov-Kimball model in d = 3
spatial dimensions is obtained by renormalization-group theory. This global
phase diagram exhibits five distinct phases. Four of these phases are
charge-ordered (CO) phases, in which the system forms two sublattices with
different electron densities. The CO phases occur at and near half filling of
the conduction electrons for the entire range of localized electron densities.
The phase boundaries are second order, except for the intermediate and large
interaction regimes, where a first-order phase boundary occurs in the central
region of the phase diagram, resulting in phase coexistence at and near half
filling of both localized and conduction electrons. These two-phase or
three-phase coexistence regions are between different charge-ordered phases,
between charge-ordered and disordered phases, and between dense and dilute
disordered phases. The second-order phase boundaries terminate on the
first-order phase transitions via critical endpoints and double critical
endpoints. The first-order phase boundary is delimited by critical points. The
cross-sections of the global phase diagram with respect to the chemical
potentials and densities of the localized and conduction electrons, at all
representative interactions strengths, hopping strengths, and temperatures, are
calculated and exhibit ten distinct topologies.Comment: Calculated density phase diagrams. Added discussions and references.
14 pages, 9 figures, 4 table
Strain bursts in plastically deforming Molybdenum micro- and nanopillars
Plastic deformation of micron and sub-micron scale specimens is characterized
by intermittent sequences of large strain bursts (dislocation avalanches) which
are separated by regions of near-elastic loading. In the present investigation
we perform a statistical characterization of strain bursts observed in
stress-controlled compressive deformation of monocrystalline Molybdenum
micropillars. We characterize the bursts in terms of the associated elongation
increments and peak deformation rates, and demonstrate that these quantities
follow power-law distributions that do not depend on specimen orientation or
stress rate. We also investigate the statistics of stress increments in between
the bursts, which are found to be Weibull distributed and exhibit a
characteristic size effect. We discuss our findings in view of observations of
deformation bursts in other materials, such as face-centered cubic and
hexagonal metals.Comment: 14 pages, 8 figures, submitted to Phil Ma
On the Second Law of thermodynamics and the piston problem
The piston problem is investigated in the case where the length of the
cylinder is infinite (on both sides) and the ratio is a very small
parameter, where is the mass of one particle of the gaz and is the mass
of the piston. Introducing initial conditions such that the stochastic motion
of the piston remains in the average at the origin (no drift), it is shown that
the time evolution of the fluids, analytically derived from Liouville equation,
agrees with the Second Law of thermodynamics.
We thus have a non equilibrium microscopical model whose evolution can be
explicitly shown to obey the two laws of thermodynamics.Comment: 29 pages, 9 figures submitted to Journal of Statistical Physics
(2003
General duality for abelian-group-valued statistical-mechanics models
We introduce a general class of statistical-mechanics models, taking values
in an abelian group, which includes examples of both spin and gauge models,
both ordered and disordered. The model is described by a set of ``variables''
and a set of ``interactions''. A Gibbs factor is associated to each variable
and to each interaction. We introduce a duality transformation for systems in
this class. The duality exchanges the abelian group with its dual, the Gibbs
factors with their Fourier transforms, and the interactions with the variables.
High (low) couplings in the interaction terms are mapped into low (high)
couplings in the one-body terms. The idea is that our class of systems extends
the one for which the classical procedure 'a la Kramers and Wannier holds, up
to include randomness into the pattern of interaction. We introduce and study
some physical examples: a random Gaussian Model, a random Potts-like model, and
a random variant of discrete scalar QED. We shortly describe the consequence of
duality for each example.Comment: 26 pages, 2 Postscript figure
- âŠ