11,428 research outputs found

    Microarray gene expression profiling of neural tissues in bovine spastic paresis

    Get PDF
    Abstract: Background: Bovine Spastic Paresis (BSP) is a neuromuscular disorder which affects both male and female cattle. BSP is characterized by spastic contraction and overextension of the gastrocnemious muscle of one or both limbs and is associated with a scarce increase in body weight. This disease seems to be caused by an autosomal and recessive gene, with incomplete penetration, although no genes clearly involved with its onset have been so far identified. We employed cDNA microarrays to identify metabolic pathways affected by BSP in Romagnola cattle breed. Investigation of those pathways at the genome level can help to understand this disease. Results: Microarray analysis of control and affected individuals resulted in 268 differentially expressed genes. These genes were subjected to KEGG pathway functional clustering analysis, revealing that they are predominantly involved in Cell Communication, Signalling Molecules and Interaction and Signal Transduction, Diseases and Nervous System classes. Significantly enriched KEGG pathway's classes for the differentially expressed genes were calculated; interestingly, all those significantly under-expressed in the affected samples are included in Neurodegenerative Diseases. To identify genome locations possibly harbouring gene(s) involved in the disease, the chromosome distribution of the differentially expressed genes was also investigated. Conclusions: The cDNA microarray we used in this study contains a brain library and, even if carrying an incomplete transcriptome representation, it has proven to be a valuable tool allowing us to add useful and new information to a poorly studied disease. By using this tool, we examined nearly 15000 transcripts and analysed gene pathways affected by the disease. Particularly, our data suggest also a defective glycinergic synaptic transmission in the development of the disease and an alteration of calcium signalling proteins. We provide data to acquire knowledge of a genetic disease for which literature still presents poor results and that could be further and specifically analysed in the next future. Moreover this study, performed in livestock, may also harbour molecular information useful for understanding human diseases

    Results from a Second RXTE Observation of the Coma Cluster

    Full text link
    The RXTE satellite observed the Coma cluster for 177 ksec during November and December 2000, a second observation motivated by the intriguing results from the first 87 ksec observation in 1996. Analysis of the new dataset confirms that thermal emission from isothermal gas does not provide a good fit to the spectral distribution of the emission from the inner 1 degree radial region. While the observed spectrum may be fit by emission from gas with a substantial temperature gradient, it is more likely that the emission includes also a secondary non-thermal component. If so, non-thermal emission comprises ~8% of the total 4--20 keV flux. Interpreting this emission as due to Compton scattering of relativistic electrons (which produce the known extended radio emission) by the cosmic microwave background radiation, we determine that the mean, volume-averaged magnetic field in the central region of Coma is B = 0.1-0.3 microgauss.Comment: 10 pages, 1 figure; APJ, in pres

    Positive Measure Spectrum for Schroedinger Operators with Periodic Magnetic Fields

    Full text link
    We study Schroedinger operators with periodic magnetic field in Euclidean 2-space, in the case of irrational magnetic flux. Positive measure Cantor spectrum is generically expected in the presence of an electric potential. We show that, even without electric potential, the spectrum has positive measure if the magnetic field is a perturbation of a constant one.Comment: 17 page

    Phase Separation and Charge-Ordered Phases of the d = 3 Falicov-Kimball Model at T>0: Temperature-Density-Chemical Potential Global Phase Diagram from Renormalization-Group Theory

    Full text link
    The global phase diagram of the spinless Falicov-Kimball model in d = 3 spatial dimensions is obtained by renormalization-group theory. This global phase diagram exhibits five distinct phases. Four of these phases are charge-ordered (CO) phases, in which the system forms two sublattices with different electron densities. The CO phases occur at and near half filling of the conduction electrons for the entire range of localized electron densities. The phase boundaries are second order, except for the intermediate and large interaction regimes, where a first-order phase boundary occurs in the central region of the phase diagram, resulting in phase coexistence at and near half filling of both localized and conduction electrons. These two-phase or three-phase coexistence regions are between different charge-ordered phases, between charge-ordered and disordered phases, and between dense and dilute disordered phases. The second-order phase boundaries terminate on the first-order phase transitions via critical endpoints and double critical endpoints. The first-order phase boundary is delimited by critical points. The cross-sections of the global phase diagram with respect to the chemical potentials and densities of the localized and conduction electrons, at all representative interactions strengths, hopping strengths, and temperatures, are calculated and exhibit ten distinct topologies.Comment: Calculated density phase diagrams. Added discussions and references. 14 pages, 9 figures, 4 table

    Strain bursts in plastically deforming Molybdenum micro- and nanopillars

    Full text link
    Plastic deformation of micron and sub-micron scale specimens is characterized by intermittent sequences of large strain bursts (dislocation avalanches) which are separated by regions of near-elastic loading. In the present investigation we perform a statistical characterization of strain bursts observed in stress-controlled compressive deformation of monocrystalline Molybdenum micropillars. We characterize the bursts in terms of the associated elongation increments and peak deformation rates, and demonstrate that these quantities follow power-law distributions that do not depend on specimen orientation or stress rate. We also investigate the statistics of stress increments in between the bursts, which are found to be Weibull distributed and exhibit a characteristic size effect. We discuss our findings in view of observations of deformation bursts in other materials, such as face-centered cubic and hexagonal metals.Comment: 14 pages, 8 figures, submitted to Phil Ma

    On the Second Law of thermodynamics and the piston problem

    Full text link
    The piston problem is investigated in the case where the length of the cylinder is infinite (on both sides) and the ratio m/Mm/M is a very small parameter, where mm is the mass of one particle of the gaz and MM is the mass of the piston. Introducing initial conditions such that the stochastic motion of the piston remains in the average at the origin (no drift), it is shown that the time evolution of the fluids, analytically derived from Liouville equation, agrees with the Second Law of thermodynamics. We thus have a non equilibrium microscopical model whose evolution can be explicitly shown to obey the two laws of thermodynamics.Comment: 29 pages, 9 figures submitted to Journal of Statistical Physics (2003

    General duality for abelian-group-valued statistical-mechanics models

    Full text link
    We introduce a general class of statistical-mechanics models, taking values in an abelian group, which includes examples of both spin and gauge models, both ordered and disordered. The model is described by a set of ``variables'' and a set of ``interactions''. A Gibbs factor is associated to each variable and to each interaction. We introduce a duality transformation for systems in this class. The duality exchanges the abelian group with its dual, the Gibbs factors with their Fourier transforms, and the interactions with the variables. High (low) couplings in the interaction terms are mapped into low (high) couplings in the one-body terms. The idea is that our class of systems extends the one for which the classical procedure 'a la Kramers and Wannier holds, up to include randomness into the pattern of interaction. We introduce and study some physical examples: a random Gaussian Model, a random Potts-like model, and a random variant of discrete scalar QED. We shortly describe the consequence of duality for each example.Comment: 26 pages, 2 Postscript figure
    • 

    corecore