112 research outputs found

    Identification of a small molecule yeast TORC1 inhibitor with a flow cytometry-based multiplex screen

    Get PDF
    TOR (target of rapamycin) is a serine/threonine kinase, evolutionarily conserved from yeast to human, which functions as a fundamental controller of cell growth. The moderate clinical benefit of rapamycin in mTOR-based therapy of many cancers favors the development of new TOR inhibitors. Here we report a high throughput flow cytometry multiplexed screen using five GFPtagged yeast clones that represent the readouts of four branches of the TORC1 signaling pathway in budding yeast. Each GFP-tagged clone was differentially color-coded and the GFP signal of each clone was measured simultaneously by flow cytometry, which allows rapid prioritization of compounds that likely act through direct modulation of TORC1 or proximal signaling components. A total of 255 compounds were confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept of the high throughput screen, we have characterized CID 3528206, a small molecule most likely to act on TORC1 as it alters GFP expression in all five GFP clones in an analogous manner to rapamycin. We have shown that CID 3528206 inhibited yeast cell growth, and that CID 3528206 inhibited TORC1 activity both in vitro and in vivo with EC50s of 150 nM and 3.9 μM, respectively. The results of microarray analysis and yeast GFP collection screen further support the notion that CID 3528206 and rapamycin modulate similar cellular pathways. Together, these results indicate that the HTS has identified a potentially useful small molecule for further development of TOR inhibitors

    Technologies of sleep research

    Get PDF
    Sleep is investigated in many different ways, many different species and under many different circumstances. Modern sleep research is a multidisciplinary venture. Therefore, this review cannot give a complete overview of all techniques used in sleep research and sleep medicine. What it will try to do is to give an overview of widely applied techniques and exciting new developments. Electroencephalography has been the backbone of sleep research and sleep medicine since its first application in the 1930s. The electroencephalogram is still used but now combined with many different techniques monitoring body and brain temperature, changes in brain and blood chemistry, or changes in brain functioning. Animal research has been very important for progress in sleep research and sleep medicine. It provides opportunities to investigate the sleeping brain in ways not possible in healthy volunteers. Progress in genomics has brought new insights in sleep regulation, the best example being the discovery of hypocretin/orexin deficiency as the cause of narcolepsy. Gene manipulation holds great promise for the future since it is possible not only to investigate the functions of different genes under normal conditions, but also to mimic human pathology in much greater detail

    Leveraging analytics to produce compelling and profitable film content

    Get PDF
    Producing compelling film content profitably is a top priority to the long-term prosperity of the film industry. Advances in digital technologies, increasing availabilities of granular big data, rapid diffusion of analytic techniques, and intensified competition from user generated content and original content produced by Subscription Video on Demand (SVOD) platforms have created unparalleled needs and opportunities for film producers to leverage analytics in content production. Built upon the theories of value creation and film production, this article proposes a conceptual framework of key analytic techniques that film producers may engage throughout the production process, such as script analytics, talent analytics, and audience analytics. The article further synthesizes the state-of-the-art research on and applications of these analytics, discuss the prospect of leveraging analytics in film production, and suggest fruitful avenues for future research with important managerial implications

    High diagnostic value of second generation CSF RT-QuIC across the wide spectrum of CJD prions

    Get PDF
    Abstract An early and accurate in vivo diagnosis of rapidly progressive dementia remains challenging, despite its critical importance for the outcome of treatable forms, and the formulation of prognosis. Real-Time Quaking-Induced Conversion (RT-QuIC) is an in vitro assay that, for the first time, specifically discriminates patients with prion disease. Here, using cerebrospinal fluid (CSF) samples from 239 patients with definite or probable prion disease and 100 patients with a definite alternative diagnosis, we compared the performance of the first (PQ-CSF) and second generation (IQ-CSF) RT-QuIC assays, and investigated the diagnostic value of IQ-CSF across the broad spectrum of human prions. Our results confirm the high sensitivity of IQ-CSF for detecting human prions with a sub-optimal sensitivity for the sporadic CJD subtypes MM2C and MM2T, and a low sensitivity limited to variant CJD, Gerstmann-Sträussler-Scheinker syndrome and fatal familial insomnia. While we found no difference in specificity between PQ-CSF and IQ-CSF, the latter showed a significant improvement in sensitivity, allowing prion detection in about 80% of PQ-CSF negative CJD samples. Our results strongly support the implementation of IQ-CSF in clinical practice. By rapidly confirming or excluding CJD with high accuracy the assay is expected to improve the outcome for patients and their enrollment in therapeutic trials

    Characterizing wing tears in common pipistrelles (Pipistrellus pipistrellus): investigating tear distribution, wing strength, and possible causes

    Get PDF
    Bats have large, thin wings that are particularly susceptible to tearing. Anatomical specializations, such as fiber reinforcement, strengthen the wing and increase its resistance to puncture, and an extensive vasculature system across the wing also promotes healing. We investigated whether tear positioning is associated with anatomy in common pipistrelles (Pipistrellus pipistrellus). Wing anatomy was described using histological techniques, imaging, and material testing. Tear information, including type, position, time in rehabilitation, and possible causes, was collected from rehabilitators of injured bats across the United Kingdom. Results suggest that the position of the plagiopatagium (the most proximal wing section to the body), rather than its anatomy, influenced the number, location, and orientation of wing tears. While material testing did not identify the plagiopatagium as being significantly weaker than the chiropatagium (the more distal sections of the wing), the plagiopatagium tended to have the most tears. The position of the tears, close to the body and toward the trailing edge, suggests that they are caused by predator attacks, such as from a cat (Felis catus), rather than collisions. Consistent with this, 38% of P. pipistrellus individuals had confirmed wing tears caused by cats, with an additional 38% identified by rehabilitators as due to suspected cat attacks. The plagiopatagium had the lowest number of blood vessels and highest amounts of elastin fibers, suggesting that healing may take longer in this section. Further investigations into the causes of tears, and their effect on flight capabilities, will help to improve bat rehabilitation

    History of narcolepsy at Stanford University

    Get PDF
    corecore