233 research outputs found

    How Sensitive is the CMB to a Single Lens?

    Full text link
    We study the imprints of a single lens, that breaks statistical isotropy, on the CMB and calculate the signal to noise ratio (S/N) for its detection. We emphasize the role of non-Gaussianities induced by LCDM weak lensing in this calculation and show that typically the S/N is much smaller than expected. In particular we find that the hypothesis that a void (texture) is responsible for the WMAP cold spot can barely (cannot) be tested via weak lensing of the CMB.Comment: Accepted for publication in JCAP, 24 pages, 5 figure

    The signature of the first stars in atomic hydrogen at redshift 20

    Get PDF
    Dark and baryonic matter moved at different velocities in the early Universe, which strongly suppressed star formation in some regions. This was estimated to imprint a large-scale fluctuation signal of about 2 mK in the 21-cm spectral line of atomic hydrogen associated with stars at a redshift of 20, although this estimate ignored the critical contribution of gas heating due to X-rays and major enhancements of the suppression. A large velocity difference reduces the abundance of halos and requires the first stars to form in halos of about a million solar masses, substantially greater than previously expected. Here we report a simulation of the distribution of the first stars at z=20 (cosmic age of ~180 Myr), incorporating all these ingredients within a 400 Mpc box. We find that the 21-cm signature of these stars is an enhanced (10 mK) fluctuation signal on the 100-Mpc scale, characterized by a flat power spectrum with prominent baryon acoustic oscillations. The required sensitivity to see this signal is achievable with an integration time of a thousand hours with an instrument like the Murchison Wide-field Array or the Low Frequency Array but designed to operate in the range of 50-100 MHz.Comment: 27 pages, 5 figures, close (but not exact) match to accepted version. Basic results unchanged from first submitted version, but justification strengthened, title and abstract modified, and substantial Supplementary Material added. Originally first submitted for publication on Oct. 12, 201

    Population III X-ray Binaries and their Impact on the Early Universe

    Full text link
    The first population of X-ray binaries (XRBs) is expected to affect the thermal and ionization states of the gas in the early Universe. Although these X-ray sources are predicted to have important implications for high-redshift observable signals, such as the hydrogen 21-cm signal from cosmic dawn and the cosmic X-ray background, their properties are poorly explored, leaving theoretical models largely uninformed. In this paper we model a population of X-ray binaries arising from zero metallicity stars. We explore how their properties depend on the adopted initial mass function (IMF) of primordial stars, finding a strong effect on their number and X-ray production efficiency. We also present scaling relations between XRBs and their X-ray emission with the local star formation rate, which can be used in sub-grid models in numerical simulations to improve the X-ray feedback prescriptions. Specifically, we find that the uniformity and strength of the X-ray feedback in the intergalactic medium is strongly dependant on the IMF. Bottom-heavy IMFs result in a smoother distribution of XRBs, but have a luminosity orders of magnitude lower than more top-heavy IMFs. Top-heavy IMFs lead to more spatially uneven, albeit strong, X-ray emission. An intermediate IMF has a strong X-ray feedback while sustaining an even emission across the intergalactic medium. These differences in X-ray feedback could be probed in the future with measurements of the cosmic dawn 21-cm line of neutral hydrogen, which offers us a new way of constraining population III IMF.Comment: Accepted for publication in MNRAS, 17 pages, 9 figure

    Scalar cosmological perturbations from inflationary black holes

    Full text link
    We study the correction to the scale invariant power spectrum of a scalar field on de Sitter space from small black holes that formed during a pre-inflationary matter dominated era. The formation probability of such black holes is estimated from primordial Gaussian density fluctuations. We determine the correction to the spectrum by first deriving the Keldysh propagator for a massless scalar field on Schwarzschild-de Sitter space. Our results suggest that the effect is strong enough to be tested -- and possibly even ruled out -- by observations.Comment: 41 pages, 11 figures, published versio

    CMB Imprints of a Pre-Inflationary Climbing Phase

    Get PDF
    We discuss the implications for cosmic microwave background (CMB) observables, of a class of pre-inflationary dynamics suggested by string models where SUSY is broken due to the presence of D-branes and orientifolds preserving incompatible portions of it. In these models the would-be inflaton is forced to emerge from the initial singularity climbing up a mild exponential potential, until it bounces against a steep exponential potential of "brane SUSY breaking" scenarios, and as a result the ensuing descent gives rise to an inflationary epoch that begins when the system is still well off its eventual attractor. If a pre-inflationary climbing phase of this type had occurred within 6-7 e-folds of the horizon exit for the largest observable wavelengths, displacement off the attractor and initial-state effects would conspire to suppress power in the primordial scalar spectrum, enhancing it in the tensor spectrum and typically superposing oscillations on both. We investigate these imprints on CMB observables over a range of parameters, examine their statistical significance, and provide a semi-analytic rationale for our results. It is tempting to ascribe at least part of the large-angle anomalies in the CMB to pre-inflationary dynamics of this type.Comment: 38 pages, LaTeX, 11 eps figures, references added, matches version to appear in JCA

    Decoupling Inflation From the String Scale

    Full text link
    When Inflation is embedded in a fundamental theory, such as string theory, it typically begins when the Universe is already substantially larger than the fundamental scale [such as the one defined by the string length scale]. This is naturally explained by postulating a pre-inflationary era, during which the size of the Universe grew from the fundamental scale to the initial inflationary scale. The problem then arises of maintaining the [presumed] initial spatial homogeneity throughout this era, so that, when it terminates, Inflation is able to begin in its potential-dominated state. Linde has proposed that a spacetime with compact negatively curved spatial sections can achieve this, by means of chaotic mixing. Such a compactification will however lead to a Casimir energy, which can lead to effects that defeat the purpose unless the coupling to gravity is suppressed. We estimate the value of this coupling required by the proposal, and use it to show that the pre-inflationary spacetime is stable, despite the violation of the Null Energy Condition entailed by the Casimir energy.Comment: 24 pages, 5 eps figures, references added, stylistic changes, version to appear in Classical and Quantum Gravit

    SARAS 2 Constraints on Global 21 cm Signals from the Epoch of Reionization

    Get PDF
    Spectral distortions in the cosmic microwave background over the 40--200~MHz band are imprinted by neutral hydrogen in the intergalactic medium prior to the end of reionization. This signal, produced in the redshift range z=634z = 6-34 at the rest frame wavelength of 21 cm, has not been detected yet; and poor understanding of high redshift astrophysics results in a large uncertainty in the expected spectrum. The SARAS~2 radiometer was purposely designed to detect the sky-averaged 21-cm signal. The instrument, deployed at the Timbaktu Collective (Southern India) in April--June 2017, collected 63~hr of science data, which were examined for the presence of the cosmological 21-cm signal. In our previous work the first-light data from SARAS~2 radiometer were analyzed with Bayesian likelihood-ratio tests using 264264 plausible astrophysical scenarios. In this paper we re-examine the data using an improved analysis based on the frequentist approach and forward modeling. We show that SARAS~2 data rejects 27 models, out of which 25 are rejected at a significance >5σ>5\sigma. All the rejected models share the scenario of inefficient heating of the primordial gas by the first population of X-ray sources along with rapid reionization
    corecore