909 research outputs found

    Could the Pioneer anomaly have a gravitational origin?

    Full text link
    If the Pioneer anomaly has a gravitational origin, it would, according to the equivalence principle, distort the motions of the planets in the Solar System. Since no anomalous motion of the planets has been detected, it is generally believed that the Pioneer anomaly can not originate from a gravitational source in the Solar System. However, this conclusion becomes less obvious when considering models that either imply modifications to gravity at long range or gravitational sources localized to the outer Solar System, given the uncertainty in the orbital parameters of the outer planets. Following the general assumption that the Pioneer spacecraft move geodesically in a spherically symmetric spacetime metric, we derive the metric disturbance that is needed in order to account for the Pioneer anomaly. We then analyze the residual effects on the astronomical observables of the three outer planets that would arise from this metric disturbance, given an arbitrary metric theory of gravity. Providing a method for comparing the computed residuals with actual residuals, our results imply that the presence of a perturbation to the gravitational field necessary to induce the Pioneer anomaly is in conflict with available data for the planets Uranus and Pluto, but not for Neptune. We therefore conclude that the motion of the Pioneer spacecraft must be non-geodesic. Since our results are model independent within the class of metric theories of gravity, they can be applied to rule out any model of the Pioneer anomaly that implies that the Pioneer spacecraft move geodesically in a perturbed spacetime metric, regardless of the origin of this metric disturbance.Comment: 16 pages, 6 figures. Rev. 3: Major revision. Accepted for publication in Phys. Rev. D. Rev. 4: Added two reference

    Zeldovich flow on cosmic vacuum background: new exact nonlinear analytical solution

    Get PDF
    A new exact nonlinear Newtonian solution for a plane matter flow superimposed on the isotropic Hubble expansion is reported. The dynamical effect of cosmic vacuum is taken into account. The solution describes the evolution of nonlinear perturbations via gravitational instability of matter and the termination of the perturbation growth by anti-gravity of vacuum at the epoch of transition from matter domination to vacuum domination. On this basis, an `approximate' 3D solution is suggested as an analog of the Zeldovich ansatz.Comment: 9 pages, 1 figure

    Metric of a tidally perturbed spinning black hole

    Full text link
    We explicitly construct the metric of a Kerr black hole that is tidally perturbed by the external universe in the slow-motion approximation. This approximation assumes that the external universe changes slowly relative to the rotation rate of the hole, thus allowing the parameterization of the Newman-Penrose scalar ψ0\psi_0 by time-dependent electric and magnetic tidal tensors. This approximation, however, does not constrain how big the spin of the background hole can be and, in principle, the perturbed metric can model rapidly spinning holes. We first generate a potential by acting with a differential operator on ψ0\psi_0. From this potential we arrive at the metric perturbation by use of the Chrzanowski procedure in the ingoing radiation gauge. We provide explicit analytic formulae for this metric perturbation in spherical Kerr-Schild coordinates, where the perturbation is finite at the horizon. This perturbation is parametrized by the mass and Kerr spin parameter of the background hole together with the electric and magnetic tidal tensors that describe the time evolution of the perturbation produced by the external universe. In order to take the metric accurate far away from the hole, these tidal tensors should be determined by asymptotically matching this metric to another one valid far from the hole. The tidally perturbed metric constructed here could be useful in initial data constructions to describe the metric near the horizons of a binary system of spinning holes. This perturbed metric could also be used to construct waveforms and study the absorption of mass and angular momentum by a Kerr black hole when external processes generate gravitational radiation.Comment: 17 pages, 3 figures. Final PRD version, minor typos, etc corrected. v3: corrected typo in Eq. (35) and (57

    Self Interacting Dark Matter in the Solar System

    Get PDF
    Weakly coupled, almost massless, spin 0 particles have been predicted by many extensions of the standard model of particle physics. Recently, the PVLAS group observed a rotation of polarization of electromagnetic waves in vacuum in the presence of transverse magnetic field. This phenomenon is best explained by the existence of a weakly coupled light pseudoscalar particle. However, the coupling required by this experiment is much larger than the conventional astrophysical limits. Here we consider a hypothetical self-interacting pseudoscalar particle which couples weakly with visible matter. Assuming that these pseudoscalars pervade the galaxy, we show that the solar limits on the pseudoscalar-photon coupling can be evaded.Comment: 17 pages, 2 figure

    Gravitational collapse in asymptotically Anti-de Sitter/de Sitter backgrounds

    Full text link
    We study here the gravitational collapse of a matter cloud with a non-vanishing tangential pressure in the presence of a non-zero cosmological term. Conditions for bounce and singularity formation are derived for the model. It is also shown that when the tangential pressures vanish, the bounce and singularity conditions reduce to that of the dust case studied earlier. The collapsing interior is matched with an exterior which is asymptotically de Sitter or anti de Sitter, depending on the sign of cosmological constant. The junction conditions for matching the cloud to exterior are specified. The effect of the cosmological term on apparent horizons is studied in some detail, and the nature of central singularity is analyzed. We also discuss here the visibility of the singularity and implications for the cosmic censorship conjecture.Comment: 11 pages, 1 figure, Revtex

    Exploring the vicinity of the Bogomol'nyi-Prasad-Sommerfield bound

    Get PDF
    We investigate systems of real scalar fields in bidimensional spacetime, dealing with potentials that are small modifications of potentials that admit supersymmetric extensions. The modifications are controlled by a real parameter, which allows implementing a perturbation procedure when such parameter is small. The approach allows obtaining the energy and topological charge in closed forms, up to first order in the parameter. We illustrate the procedure with some examples. In particular, we show how to remove the degeneracy in energy for the one-field and the two-field solutions that appear in a model of two real scalar fields.Comment: Revtex, 9 pages, To be published in J. Phys.

    The optical system of the H.E.S.S. imaging atmospheric Cherenkov telescopes, Part II: mirror alignment and point spread function

    Full text link
    Mirror facets of the H.E.S.S. imaging atmospheric Cherenkov telescopes are aligned using stars imaged onto the closed lid of the PMT camera, viewed by a CCD camera. The alignment procedure works reliably and includes the automatic analysis of CCD images and control of the facet alignment actuators. On-axis, 80% of the reflected light is contained in a circle of less than 1 mrad diameter. The spot widens with increasing angle to the telescope axis. In accordance with simulations, the spot size has roughly doubled at an angle of 1.4 degr. from the axis. The expected variation of spot size with elevation due to deformations of the support structure is visible, but is completely non-critical over the usual working range. Overall, the optical quality of the telescope exceeds the specifications.Comment: 23 pages, 13 figure

    Dynamical Lorentz simmetry breaking from 3+1 Axion-Wess-Zumino model

    Get PDF
    We study the renormalizable abelian vector-field models in the presence of the Wess-Zumino interaction with the pseudoscalar matter. The renormalizability is achieved by supplementing the standard kinetic term of vector fields with higher derivatives. The appearance of fourth power of momentum in the vector-field propagator leads to the super-renormalizable theory in which the β\beta-function, the vector-field renormalization constant and the anomalous mass dimension are calculated exactly. It is shown that this model has the infrared stable fixed point and its low-energy limit is non-trivial. The modified effective potential for the pseudoscalar matter leads to the possible occurrence of dynamical breaking of the Lorentz symmetry. This phenomenon is related to the modification of Electrodynamics by means of the Chern-Simons (CS) interaction polarized along a constant CS vector. Its presence makes the vacuum optically active that has been recently estimated from astrophysical data. We examine two possibilities for the CS vector to be time-like or space-like, under the assumption that it originates from v.e.v. of some pseudoscalar matter and show that only the latter one is consistent in the framework of the AWZ model, because a time-like CS vector makes the vacuum unstable under pairs creation of tachyonic photon modes with the finite vacuum decay rate.Comment: 33 pages, no Figures, Plain TeX, submitted to Phys. Rev.

    Effective Values of Komar Conserved Quantities and Their Applications

    Full text link
    We calculate the effective Komar angular momentum for the Kerr-Newman (KN) black hole. This result is valid at any radial distance on and outside the black hole event horizon. The effcetive values of mass and angular momentum are then used to derive an identity (Kχμ=2STK_{\chi^{\mu}}=2ST) which relates the Komar conserved charge (KχμK_{\chi^{\mu}}) corresponding to the null Killing vector (χμ\chi^{\mu}) with the thermodynamic quantities of this black hole. As an application of this identity the generalised Smarr formula for this black hole is derived. This establishes the fact that the above identity is a local form of the inherently non-local generalised Smarr formula.Comment: v3, minor modifications over v2; LaTex, 9 pages, no figures, to appear in Int. Jour. Theo. Phy

    de Sitter special relativity

    Full text link
    A special relativity based on the de Sitter group is introduced, which is the theory that might hold up in the presence of a non-vanishing cosmological constant. Like ordinary special relativity, it retains the quotient character of spacetime, and a notion of homogeneity. As a consequence, the underlying spacetime will be a de Sitter spacetime, whose associated kinematics will differ from that of ordinary special relativity. The corresponding modified notions of energy and momentum are obtained, and the exact relationship between them, which is invariant under a re-scaling of the involved quantities, explicitly exhibited. Since the de Sitter group can be considered a particular deformation of the Poincar\'e group, this theory turns out to be a specific kind of deformed (or doubly) special relativity. Some experimental consequences, as well as the causal structure of spacetime--modified by the presence of the de Sitter horizon--are briefly discussed.Comment: V2: Some presentation changes; a new section introduced, with a discussion about possible phenomenological consequences; new references added; version to be published in Classical and Quantum Gravit
    corecore