195 research outputs found

    Crossover from two-frequency pulse compounds to escaping solitons

    Get PDF
    The nonlinear interaction of copropagating optical solitons enables a large variety of intriguing bound-states of light. We here investigate the interaction dynamics of two initially superimposed fundamental solitons at distinctly different frequencies. Both pulses are located in distinct domains of anomalous dispersion, separated by an interjacent domain of normal dispersion, so that group velocity matching can be achieved despite a vast frequency gap. We demonstrate the existence of two regions with different dynamical behavior. For small velocity mismatch we observe a domain in which a single heteronuclear pulse compound is formed, which is distinct from the usual concept of soliton molecules. The binding mechanism is realized by the mutual cross phase modulation of the interacting pulses. For large velocity mismatch both pulses escape their mutual binding and move away from each other. The crossover phase between these two cases exhibits two localized states with different velocity, consisting of a strong trapping pulse and weak trapped pulse. We detail a simplified theoretical approach which accurately estimates the parameter range in which compound states are formed. This trapping-to-escape transition allows to study the limits of pulse-bonding as a fundamental phenomenon in nonlinear optics, opening up new perspectives for the all-optical manipulation of light by light

    Two-color soliton meta-atoms and molecules

    Full text link
    We present a detailed overview of the physics of two-color soliton molecules in nonlinear waveguides, i.e. bound states of localized optical pulses which are held together due to an incoherent interaction mechanism. The mutual confinement, or trapping, of the subpulses, which leads to a stable propagation of the pulse compound, is enabled by the nonlinear Kerr effect. Special attention is paid to the description of the binding mechanism in terms of attractive potential wells, induced by the refractive index changes of the subpulses, exerted on one another through cross-phase modulation. Specifically, we discuss nonlinear-photonics meta atoms, given by pulse compounds consisting of a strong trapping pulse and a weak trapped pulse, for which trapped states of low intensity are determined by a Schr\"odinger-type eigenproblem. We discuss the rich dynamical behavior of such meta-atoms, demonstrating that an increase of the group-velocity mismatch of both subpulses leads to an ionization-like trapping-to-escape transition. We further demonstrate that if both constituent pulses are of similar amplitude, molecule-like bound-states are formed. We show that z-periodic amplitude variations permit a coupling of these pulse compound to dispersive waves, resulting in the resonant emission of Kushi-comb-like multi-frequency radiation

    Two-color pulse compounds in waveguides with a zero-nonlinearity point

    Full text link
    We study incoherently coupled two-frequency pulse compounds in waveguides with single zero-dispersion and zero-nonlinearity points. In such waveguides, supported by a negative nonlinearity, soliton dynamics can be obtained even in domains of normal dispersion. We demonstrate trapping of weak pulses by solitary-wave wells, forming nonlinear-photonics meta-atoms, and molecule-like bound-states of pulses. We study the impact of Raman effect on these pulse compounds, finding that, depending on the precise subpulse configuration, they decelerate, accelerate, or are completely unaffected. Our results extend the range of systems in which two-frequency pulse compounds can be expected to exist and demonstrate further unique and unexpected behavior

    (Invited) Two-color soliton meta-atoms and molecules

    Get PDF
    We present a detailed overview of the physics of two-color soliton molecules in nonlinear waveguides, i.e. bound states of localized optical pulses which are held together due to an incoherent interaction mechanism. The mutual confinement, or trapping, of the subpulses, which leads to a stable propagation of the pulse compound, is enabled by the nonlinear Kerr effect. Special attention is paid to the description of the binding mechanism in terms of attractive potential wells, induced by the refractive index changes of the subpulses, exerted on one another through cross-phase modulation. Specifically, we discuss nonlinear-photonics meta atoms, given by pulse compounds consisting of a strong trapping pulse and a weak trapped pulse, for which trapped states of low intensity are determined by a Schrödinger-type eigenproblem. We discuss the rich dynamical behavior of such meta-atoms, demonstrating that an increase of the group-velocity mismatch of both subpulses leads to an ionization-like trapping-to-escape transition. We further demonstrate that if both constituent pulses are of similar amplitude, molecule-like bound-states are formed. We show that -periodic amplitude variations permit a coupling of these pulse compound to dispersive waves, resulting in the resonant emission of Kushi-comb-like multi-frequency radiation

    Resonant Kushi-comb-like multi-frequency radiation of oscillating two-color soliton molecules

    Get PDF
    Nonlinear waveguides with two distinct domains of anomalous dispersion can support the formation of molecule-like two-color pulse compounds. They consist of two tightly bound subpulses with frequency loci separated by a vast frequency gap. Perturbing such a two-color pulse compound triggers periodic amplitude and width variations, reminiscent of molecular vibrations. With increasing strength of perturbation, the dynamics of the pulse compound changes from harmonic to nonlinear oscillations. The periodic amplitude variations enable coupling of the pulse compound to dispersive waves, resulting in the resonant emission of multi-frequency radiation. We demonstrate that the location of the resonances can be precisely predicted by phase-matching conditions. If the pulse compound consists of a pair of identical subpulses, inherent symmetries lead to degeneracies in the resonance spectrum. Weak perturbations lift existing degeneracies and cause a splitting of the resonance lines into multiple lines. Strong perturbations result in more complex emission spectra, characterized by well separated spectral bands caused by resonant Cherenkov radiation and additional four-wave mixing processes

    Pressure and temperature dependences in p-ZnAs2 at high pressures

    Full text link
    Kinetic effects in p-ZnAs2 were measured at hydrostatic (P ≤ 9 GPa) and quasi-hydrostatic (to P ≤ 50 GPa) pressures on pressure buildup and depressurization. A conclusion on the occurrence of two phase transitions was made: I-II at P = 9-15 GPa and II-III at P = 30-35 GPa. Based on the temperature dependences of electrical resistance, it was shown that the conductivity is determined by activation mechanisms in a temperature range of 250-400 K; in this case, the activation energy changed with temperature and pressure. The pressure dependences of the activation energy and the coefficient R 0, which characterizes the mobility, concentration, and effective mass of carriers, were calculated. © 2013 Pleiades Publishing, Ltd

    High pressures, low temperatures, and magnetic field effects on AgFeAsSe3 and AgFeSbSe3 properties

    Full text link
    A procedure for synthesizing AgFeAsSe3 and AgFeSbSe3 is presented, and their electric and magnetic properties are investigated over a wide range of temperatures, pressures, and magnetic field variation. At 100-400K, the samples are characterized by semiconductor properties. Under pressures of ∼25 and ∼24 GPa, the electric properties of AgFeAsSe 3 and AgFeSbSe3 change greatly. © 2013 Allerton Press, Inc

    Synthesis and characterization of the new high pressure phases A Cu 3 v 4O 12 (A =Gd, Tb, Er)

    Full text link
    New ACu3V4O12 (A=Gd, Tb, Er) phases have been prepared at high pressure and high-temperature conditions (P∼8-9 GPa, T∼1000°C) in a toroid-type high pressure cell. These compounds crystallize in the cubic symmetry with a perovskite-like structure. At ambient pressure, they are paramagnetic and have activation-type conductivity. The effect of high pressure (10-50 GPa) on the electrical properties of the materials was analyzed in the temperature range from 78 to 300 K. Pressure ranges of the transition from activation type to metallic conductivity have been determined. The crystal structure of ACu3V4O12 (A=Gd, Tb, Er) was found to be stable up to 50 GPa. © 2013 Copyright Taylor and Francis Group, LLC

    Soliton compression and supercontinuum spectra in nonlinear diamond photonics

    Get PDF
    We numerically explore synthetic crystal diamond for realizing novel light sources in ranges which are up to now difficult to achieve with other materials, such as sub-10-fs pulse durations and challenging spectral ranges. We assess the performance of on-chip diamond waveguides for controlling light generation by means of nonlinear soliton dynamics. Tailoring the cross-section of such diamond waveguides allows to design dispersion profiles with custom zero-dispersion points and anomalous dispersion ranges exceeding an octave. Various propagation dynamics, including supercontinuum generation by soliton fission, can be realized in diamond photonics. In stark contrast to usual silica-based optical fibers, where such processes occur on the scale of meters, in diamond millimeter-scale propagation distances are sufficient. Unperturbed soliton-dynamics prior to soliton fission allow to identify a pulse self-compression scenario that promises record-breaking compression factors on chip-size propagation lengths

    Strong terahertz emission from electromagnetic diffusion near cutoff in plasma

    Get PDF
    Anew mechanism for electromagnetic emission in the terahertz (THz) frequency regime from laser-plasma interactions is described. A localized and long-lasting transverse current is produced by two counter-propagating short laser pulses in weakly magnetized plasma. We show that the electromagnetic wave radiating from this current source, even though its frequency is close to cut-off of the ambient plasma, grows and diffuses towards the plasma-vacuum boundary, emitting a strong monochromatic THz wave. With driving laser pulses of moderate power, the THz wave has a field strength of tens of MV m(-1), a frequency of a few THz and a quasi-continuous power that exceeds all previous monochromatic THz sources. The novelty of the mechanism lies in a diffusing electromagnetic wave close to cut-off, which is modelled by a continuously driven complex diffusion equationopen
    corecore