335 research outputs found

    Local recurrence of soft tissue sarcoma: A radiomic analysis

    Get PDF
    Background To perform a radiomics analysis in local recurrence (LR) surveillance of limb soft tissue sarcoma (STS) Patients and methods This is a sub-study of a prospective multicenter study with Institutional Review Board approval supported by ESSR (European Society of Musculoskeletal Radiology). radiomics analysis was done on fast spin echo axial T1w, T2w fat saturated and post-contrast T1w (T1wGd) 1.5T MRI images of consecutively recruited patients between March 2016 and September 2018. Results N = 11 adult patients (6 men and 5 women; mean age 57.8 \ub1 17.8) underwent MRI to exclude STS LR: a total of 33 follow-up events were evaluated. A total of 198 data-sets per patients of both pathological and normal tissue were analyzed. Four radiomics features were significantly correlated to tumor size (p < 0.02) and four radiomics features were correlated with grading (p < 0.05). ROC analysis showed an AUC between 0.71 (95%CI: 0.55-0.87) for T1w and 0.96 (95%CI: 0.87-1.00) for post-contrast T1w. Conclusions radiomics features allow to differentiate normal tissue from pathological tissue in MRI surveillance of local recurrence of STS. radiomics in STS evaluation is useful not only for detection purposes but also for lesion characterization

    Blockchain in radiology research and clinical practice: current trends and future directions

    Get PDF
    Blockchain usage in healthcare, in radiology, in particular, is at its very early infancy. Only a few research applications have been tested, however, blockchain technology is widely known outside healthcare and widely adopted, especially in Finance, since 2009 at least. Learning by history, radiology is a potential ideal scenario to apply this technology. Blockchain could have the potential to increase radiological data value in both clinical and research settings for the patient digital record, radiological reports, privacy control, quantitative image analysis, cybersecurity, radiomics and artificial intelligence. Up-to-date experiences using blockchain in radiology are still limited, but radiologists should be aware of the emergence of this technology and follow its next developments. We present here the potentials of some applications of blockchain in radiology

    Radiomics analysis in ovarian cancer: A narrative review

    Get PDF
    Ovarian cancer (OC) is the second most common gynecological malignancy, accounting for about 14,000 deaths in 2020 in the US. The recognition of tools for proper screening, early diagnosis, and prognosis of OC is still lagging. The application of methods such as radiomics to medical images such as ultrasound scan (US), computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) in OC may help to realize so-called “precision medicine” by developing new quantification metrics linking qualitative and/or quantitative data imaging to achieve clinical diagnostic endpoints. This narrative review aims to summarize the applications of radiomics as a support in the management of a complex pathology such as ovarian cancer. We give an insight into the current evidence on radiomics applied to different imaging methods

    MammoWave Breast Imaging Device: Prospective Clinical Trial Results and AI Enhancement

    Get PDF
    Penalised PET image reconstruction algorithms are often accelerated during early iterations with the use of subsets. However, these methods may exhibit limit cycle behaviour at later iterations due to variations between subsets. Desirable converged images can be achieved for a subclass of these algorithms via the implementation of a relaxed step size sequence, but the heuristic selection of parameters will impact the quality of the image sequence and algorithm convergence rates. In this work, we demonstrate the adaption and application of a class of stochastic variance reduction gradient algorithms for PET image reconstruction using the relative difference penalty and numerically compare convergence performance to BSREM. The two investigated algorithms are: SAGA and SVRG. These algorithms require the retention in memory of recently computed subset gradients, which are utilised in subsequent updates. We present several numerical studies based on Monte Carlo simulated data and a patient data set for fully 3D PET acquisitions. The impact of the number of subsets, different preconditioners and step size methods on the convergence of regions of interest values within the reconstructed images is explored. We observe that when using constant preconditioning, SAGA and SVRG demonstrate reduced variations in voxel values between subsequent updates and are less reliant on step size hyper-parameter selection than BSREM reconstructions. Furthermore, SAGA and SVRG can converge significantly faster to the penalised maximum likelihood solution than BSREM, particularly in low count data

    Spinal cord hypermetabolism extends to skeletal muscle in amyotrophic lateral sclerosis: a computational approach to [18F]-fluorodeoxyglucose PET/CT images

    Get PDF
    Purpose: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease leading to neuromuscular palsy and death. We propose a computational approach to [18F]-fluorodeoxyglucose (FDG) PET/CT images to analyze the structure and metabolic pattern of skeletal muscle in ALS and its relationship with disease aggressiveness. Materials and methods: A computational 3D method was used to extract whole psoas muscle\u2019s volumes and average attenuation coefficient (AAC) from CT images obtained by FDG PET/CT performed in 62 ALS patients and healthy controls. Psoas average standardized uptake value (normalized on the liver, N-SUV) and its distribution heterogeneity (defined as N-SUV variation coefficient, VC-SUV) were also extracted. Spinal cord and brain motor cortex FDG uptake were also estimated. Results: As previously described, FDG uptake was significantly higher in the spinal cord and lower in the brain motor cortex, in ALS compared to controls. While psoas AAC was similar in patients and controls, in ALS a significant reduction in psoas volume (3.6 \ub1 1.02 vs 4.12 \ub1 1.33 mL/kg; p < 0.01) and increase in psoas N-SUV (0.45 \ub1 0.19 vs 0.29 \ub1 0.09; p < 0.001) were observed. Higher heterogeneity of psoas FDG uptake was also documented in ALS (VC-SUV 8 \ub1 4%, vs 5 \ub1 2%, respectively, p < 0.001) and significantly predicted overall survival at Kaplan\u2013Meier analysis. VC-SUV prognostic power was confirmed by univariate analysis, while the multivariate Cox regression model identified the spinal cord metabolic activation as the only independent prognostic biomarker. Conclusion: The present data suggest the existence of a common mechanism contributing to disease progression through the metabolic impairment of both second motor neuron and its effector

    Monocyte Distribution Width (MDW) as novel inflammatory marker with prognostic significance in COVID-19 patients

    Get PDF
    Monocyte Distribution Width (MDW), a new cytometric parameter correlating with cytomorphologic changes occurring upon massive monocyte activation, has recently emerged as promising early biomarker of sepsis. Similar to sepsis, monocyte/macrophage subsets are considered key mediators of the life-threatening hyper-inflammatory disorder characterizing severe COVID-19. In this study, we longitudinally analyzed MDW values in a cohort of 87 COVID-19 patients consecutively admitted to our hospital, showing significant correlations between MDW and common inflammatory markers, namely CRP (p &lt; 0.001), fibrinogen (p &lt; 0.001) and ferritin (p &lt; 0.01). Moreover, high MDW values resulted to be prognostically associated with fatal outcome in COVID-19 patients (AUC = 0.76, 95% CI: 0.66\u20130.87, sensitivity 0.75, specificity 0.70, MDW threshold 26.4; RR = 4.91, 95% CI: 1.73\u201313.96; OR = 7.14, 95% CI: 2.06\u201324.71). This pilot study shows that MDW can be useful in the monitoring of COVID-19 patients, as this innovative hematologic biomarker is: (1) easy to obtain, (2) directly related to the activation state of a fundamental inflammatory cell subset (i.e. monocytes, pivotal in both cytokine storm and sepsis immunopathogenesis), (3) well correlated with clinical severity of COVID-19-associated inflammatory disorder, and, in turn, (4) endowed with relevant prognostic significance. Additional studies are needed to define further the clinical impact of MDW testing in the management of COVID-19 patients

    Changes in gene expression in human skeletal stem cells transduced with constitutively active Gs\u3b1 correlates with hallmark histopathological changes seen in fibrous dysplastic bone

    Get PDF
    Fibrous dysplasia (FD) of bone is a complex disease of the skeleton caused by dominant activating mutations of the GNAS locus encoding for the \u3b1 subunit of the G protein-coupled receptor complex (Gs\u3b1). The mutation involves a substitution of arginine at position 201 by histidine or cysteine (Gs\u3b1R201H or R201C), which leads to overproduction of cAMP. Several signaling pathways are implicated downstream of excess cAMP in the manifestation of disease. However, the pathogenesis of FD remains largely unknown. The overall FD phenotype can be attributed to alterations of skeletal stem/progenitor cells which normally develop into osteogenic or adipogenic cells (in cis), and are also known to provide support to angiogenesis, hematopoiesis, and osteoclastogenesis (in trans). In order to dissect the molecular pathways rooted in skeletal stem/progenitor cells by FD mutations, we engineered human skeletal stem/progenitor cells with the Gs\u3b1R201C mutation and performed transcriptomic analysis. Our data suggest that this FD mutation profoundly alters the properties of skeletal stem/progenitor cells by pushing them towards formation of disorganized bone with a concomitant alteration of adipogenic differentiation. In addition, the mutation creates an altered in trans environment that induces neovascularization, cytokine/chemokine changes and osteoclastogenesis. In silico comparison of our data with the signature of FD craniofacial samples highlighted common traits, such as the upregulation of ADAM (A Disintegrin and Metalloprotease) proteins and other matrix-related factors, and of PDE7B (Phosphodiesterase 7B), which can be considered as a buffering process, activated to compensate for excess cAMP. We also observed high levels of CEBPs (CCAAT-Enhancer Binding Proteins) in both data sets, factors related to browning of white fat. This is the first analysis of the reaction of human skeletal stem/progenitor cells to the introduction of the FD mutation and we believe it provides a useful background for further studies on the molecular basis of the disease and for the identification of novel potential therapeutic targets

    Brca detection rate in an italian cohort of luminal early-onset and triple-negative breast cancer patients without family history: When biology overcomes genealogy

    Get PDF
    NCCN Guidelines recommend BRCA genetic testing in individuals with a probability &gt;5% of being a carrier. Nonetheless, the cost-effectiveness of testing individuals with no tumor family history is still debated, especially when BRCA testing is offered by the national health service. Our analysis evaluated the rate of BRCA pathogenic or likely-pathogenic variants in 159 triplenegative breast cancer (TNBC) patients diagnosed ≤60 years, and 109 luminal-like breast cancer (BC) patients diagnosed ≤35 without breast and/or ovarian family histories. In TNBC patients, BRCA mutation prevalence was 22.6% (21.4% BRCA1). Mutation prevalence was 64.2% ≤30 years, 31.8% in patients aged 31–40, 16.1% for those aged 41–50 and 7.9% in 51–60s. A total of 40% of patients with estrogen receptors (ER) 1–9% were BRCA1 carriers. BRCA detection rate in early-onset BCs was 6.4% (4.6% BRCA2). Mutation prevalence was 0% between 0–25 years, 9% between 26–30 years and 6% between 31–35 years. In conclusion, BRCA testing is recommended in TNBC patients diagnosed ≤60 years, regardless of family cancer history or histotype, and by using immunohistochemical staining &lt;10% for both ER and/PR. In luminal-like early-onset BC, a lower BRCA detection rate was observed, suggesting a role for other predisposing genes along with BRCA genetic testing
    • …
    corecore