68 research outputs found

    Poisson Hypothesis for Information Networks (A study in non-linear Markov processes) I. Domain of Validity

    Full text link
    In this paper we study the Poisson Hypothesis, which is a device to analyze approximately the behavior of large queueing networks. We prove it in some simple limiting cases. We show in particular that the corresponding dynamical system, defined by the non-linear Markov process, has a line of fixed points which are global attractors. To do this we derive the corresponding non-linear equation and we explore its self-averaging properties. We also argue that in cases of havy-tail service times the PH can be violated.Comment: 77 page

    Metastability of Queuing Networks with Mobile Servers

    Full text link
    We study symmetric queuing networks with moving servers and FIFO service discipline. The mean-field limit dynamics demonstrates unexpected behavior which we attribute to the meta-stability phenomenon. Large enough finite symmetric networks on regular graphs are proved to be transient for arbitrarily small inflow rates. However, the limiting non-linear Markov process possesses at least two stationary solutions. The proof of transience is based on martingale techniques

    On products of skew rotations

    Full text link
    Let H1(p,q)H_1(p,q), H2(p,q)H_2(p,q) be two time-independent Hamiltonians with one degree of freedom and {S1t}\{S_1^t\}, {S2t}\{S_2^t\} be the one-parametric groups of shifts along the orbits of Hamiltonian systems generated by H1H_1, H2H_2. In some problems of population genetics there appear the transformations of the plane having the form T(h1,h2)=S2h2S1h1T^{(h_1,h_2)}=S^{h_2}_2\cdot S_1^{h_1} under some conditions on H1H_1, H2H_2. We study in this paper asymptotical properties of trajectories of T(h1,h2)T^{(h_1,h_2)}.Comment: 13 pages, 10 figure

    Concave Switching in Single and Multihop Networks

    Full text link
    Switched queueing networks model wireless networks, input queued switches and numerous other networked communications systems. For single-hop networks, we consider a {(α,g\alpha,g)-switch policy} which combines the MaxWeight policies with bandwidth sharing networks -- a further well studied model of Internet congestion. We prove the maximum stability property for this class of randomized policies. Thus these policies have the same first order behavior as the MaxWeight policies. However, for multihop networks some of these generalized polices address a number of critical weakness of the MaxWeight/BackPressure policies. For multihop networks with fixed routing, we consider the Proportional Scheduler (or (1,log)-policy). In this setting, the BackPressure policy is maximum stable, but must maintain a queue for every route-destination, which typically grows rapidly with a network's size. However, this proportionally fair policy only needs to maintain a queue for each outgoing link, which is typically bounded in number. As is common with Internet routing, by maintaining per-link queueing each node only needs to know the next hop for each packet and not its entire route. Further, in contrast to BackPressure, the Proportional Scheduler does not compare downstream queue lengths to determine weights, only local link information is required. This leads to greater potential for decomposed implementations of the policy. Through a reduction argument and an entropy argument, we demonstrate that, whilst maintaining substantially less queueing overhead, the Proportional Scheduler achieves maximum throughput stability.Comment: 28 page

    Spontaneous Resonances and the Coherent States of the Queuing Networks

    Full text link
    We present an example of a highly connected closed network of servers, where the time correlations do not go to zero in the infinite volume limit. This phenomenon is similar to the continuous symmetry breaking at low temperatures in statistical mechanics. The role of the inverse temperature is played by the average load.Comment: 3 figures added, small correction

    Random Walks and Chemical Networks

    Get PDF
    Projet MEVALWe consider continuous time random walks in the orthant with bounded jumps, the rates however are not bounded - they have a polynomial dependence on the coordinates of the point. The case when the rates are bounded correspon- ds in applications to the queueing theory, more exactly to markovian communication networks. The goal of this paper is to discuss the situation for polynomial rates, we show that the boundaries do not play role, but new effects and complicated behaviour can arise due to different time scales

    Context Free Evolution of Words

    Get PDF
    Projet MEVALRandom grammars were introduced in computer science, but the study of their thermodynamic and long time behaviour started only recently. In this paper we undertake more detailed study of context free grammars in the supercritical case, that is when the word grows exponentially fast. We study and calculate the statistics of factors for large t, prove the existence of various limiting measures and study relations between them
    corecore