638 research outputs found
Non-monotonous crossover between capillary condensation and interface localisation/delocalisation transition in binary polymer blends
Within self-consistent field theory we study the phase behaviour of a
symmetric binary AB polymer blend confined into a thin film. The film surfaces
interact with the monomers via short range potentials. One surface attracts the
A component and the corresponding semi-infinite system exhibits a first order
wetting transition. The surface interaction of the opposite surface is varied
as to study the crossover from capillary condensation for symmetric surface
fields to the interface localisation/delocalisation transition for
antisymmetric surface fields. In the former case the phase diagram has a single
critical point close to the bulk critical point. In the latter case the phase
diagram exhibits two critical points which correspond to the prewetting
critical points of the semi-infinite system. The crossover between these
qualitatively different limiting behaviours occurs gradually, however, the
critical temperature and the critical composition exhibit a non-monotonic
dependence on the surface field.Comment: to appear in Europhys.Let
Fine and ultrafine particle number and size measurements from industrial combustion processes : primary emissions field data
This study is to our knowledge the first to present the results of on-line measurements of residual nanoparticle numbers downstream of the flue gas treatment systems of a wide variety of medium- and large-scale industrial installations. Where available, a semi-quantitative elemental composition of the sampled particles is carried out using a Scanning Electron Microscope coupled with an Energy Dispersive Spectrometer (SEM-EDS). The semi-quantitative elemental composition as a function of the particle size is presented. EU's Best Available Technology documents (BAT) show removal efficiencies of Electrostatic Precipitator (ESP) and bag filter dedusting systems exceeding 99% when expressed in terms of weight. Their efficiency decreases slightly for particles smaller than 1 mu m but when expressed in terms of weight, still exceeds 99% for bag filters and 96% for ESP. This study reveals that in terms of particle numbers, residual nanoparticles (NP) leaving the dedusting systems dominate by several orders of magnitude. In terms of weight, all installations respect their emission limit values and the contribution of NP to weight concentrations is negligible, despite their dominance in terms of numbers. Current World Health Organisation regulations are expressed in terms of PM2.5 wt concentrations and therefore do not reflect the presence or absence of a high number of NP. This study suggests that research is needed on possible additional guidelines related to NP given their possible toxicity and high potential to easily enter the blood stream when inhaled by humans
Spatiotemporal changes in the accumulation of sugar and potassium within individual 'Sauvignon Blanc' (Vitis vinifera L.) berries
It has been speculated that there may be a link between the transport of sugar and potassium into grape berries during ripening as they exhibit similar accumulation patterns. It is unclear if this proposed link is apparent in individual grape berries and in the grape berry compartments. Single grape berries were therefore analysed for sugar and potassium content and concentration within the skin, seeds and the pulp from pre-véraison until harvest. Sugar and potassium had similar accumulation patterns and positive relationships were confirmed between the sugar and potassium content within individual berries and compartments. The sugar content in the grape berry, however, increased 5-fold during ripening whereas the potassium content only doubled. Both sugar and potassium increased with berry size, suggesting a ternary relationship with berry water. The high variability in sugar and potassium contents between berries however affirms plasticity in their accumulation within individual berries
Mineral sinks within ripening grape berries (Vitis vinifera L.)
Trends in the accumulation of mineral elements into the grape berry components give information about vascular flow into the berry. Shiraz berries were dissected into receptacle, skin, pulp, brush and seeds and the accumulation of 10 mineral elements into these components was followed through development. The elements were separated into two categories according to their accumulation pattern into the berry. The first group of elements continued to accumulate throughout berry growth and ripening, and was comprised of phloem-mobile potassium, phosphorus, sulphur, magnesium, boron, iron and copper. The second group of elements accumulated mostly prior to veraison, and included the xylem-mobile minerals calcium, manganese and zinc. These results indicate that the xylem contribution to berry growth diminished after veraison. Berry fresh weight, dry weight, as well as berry sugar content, were all highly correlated with berry potassium content. While the pulp and skin were the strongest sinks for potassium and boron, seeds were the strongest sinks for calcium, phosphorus, sulphur, manganese and zinc. With the exception of calcium and manganese, seeds ceased to accumulate most elements during late ripening. The berry receptacle and brush did not accumulate any of the elements to levels above those of the other berry components at any stage of development. Therefore, they did not act as sinks for xylem- or phloem-mobile elements as vascular flow to the pulp and skin slowed.
Effect of Gravity and Confinement on Phase Equilibria: A Density Matrix Renormalization Approach
The phase diagram of the 2D Ising model confined between two infinite walls
and subject to opposing surface fields and to a bulk "gravitational" field is
calculated by means of density matrix renormalization methods. In absence of
gravity two phase coexistence is restricted to temperatures below the wetting
temperature. We find that gravity restores the two phase coexistence up to the
bulk critical temperature, in agreement with previous mean-field predictions.
We calculate the exponents governing the finite size scaling in the temperature
and in the gravitational field directions. The former is the exponent which
describes the shift of the critical temperature in capillary condensation. The
latter agrees, for large surface fields, with a scaling assumption of Van
Leeuwen and Sengers. Magnetization profiles in the two phase and in the single
phase region are calculated. The profiles in the single phase region, where an
interface is present, agree well with magnetization profiles calculated from a
simple solid-on-solid interface hamiltonian.Comment: 4 pages, RevTeX and 4 PostScript figures included. Final version as
published. To appear in Phys. Rev. Let
Impact of dynamic changes in MELD score on survival after liver transplantation : a Eurotransplant registry analysis
Background & Aims: With restricted numbers of available organs, futility in liver transplantation has to be avoided. The concept of dynamic changes in MELD score (DeltaMELD) has previously been shown to be a simple tool to identify patients with the greatest risk of death after transplantation. Aim was to validate this concept with the Eurotransplant (ET) database.
Methods: A retrospective registry analysis was performed on all patients listed for liver transplantation within ET between 2006 and 2011. Patients <18 years of age, acute liver failure, malignancy and patients listed for retransplantation were excluded. Influence of MELD at listing (MELDon), MELD at transplantation (MELDoff), DeltaMELD, age, sex, underlying disease and time on the waiting list on overall survival after liver transplantation were evaluated.
Results: A total of 16 821 patients were listed for liver transplantation, 8096 met the inclusion criteria. Age, MELD on and DeltaMELD showed significant influence on survival on the waiting list. Age and DeltaMELD showed influence on survival after liver transplantation, with DeltaMELD>10 showing a 1.6-fold increased risk of death.
Conclusion: The concept of DeltaMELD was validated in a large, prospective data set. It provides a simple tool to identify patients with increased risk of death after liver transplantation and might help improve long-term results
Potassium in the grape (Vitis vinifera L.) berry: transport and function
K⁺ is the most abundant cation in the grape berry. Here we focus on the most recent information in the long distance transport and partitioning of K⁺ within the grapevine and postulate on the potential role of K⁺ in berry sugar accumulation, berry water relations, cellular growth, disease resistance, abiotic stress tolerance and mitigating senescence. By integrating information from several different plant systems we have been able to generate new hypotheses on the integral functions of this predominant cation and to improve our understanding of how these functions contribute to grape berry growth and ripening. Valuable contributions to the study of K⁺ in membrane stabilization, turgor maintenance and phloem transport have allowed us to propose a mechanistic model for the role of this cation in grape berry development.Suzy Y. Rogiers, Zelmari A. Coetzee, Rob R. Walker, Alain Deloire and
Stephen D. Tyerma
Mobilization of putative high-proliferative-potential endothelial colony-forming cells during antihypertensive treatment in patients with essential hypertension
Recent studies have shown that in response to vascular damage or ischemia, bone marrow-derived endothelial progenitor cells (EPCs) are recruited into the circulation. To investigate whether antihypertensive treatment has an influence on the number of circulating EPCs, patients with essential hypertension were treated either with the angiotensin receptor antagonist telmisartan, the calcium channel blocker nisoldipine, or their combination for 6 weeks. At baseline and after 3 and 6 weeks of treatment, EPCs were identified and quantified by fluorescence-activated cell sorting (FACS) analysis and by their capacity to generate colony-forming units of the endothelial lineage (CFU-EC) in a methylcellulose-based assay. During treatment, patients in the nisoldipine groups, but not in the telmisartan group, showed a significant mobilization of EPCs, which in part had the capacity to generate large-sized colonies comprising more than 1,000 cells. Moreover, a remarkable correlation between the number of CFU-EC and the number of circulating CD133(+)/CD34(+)/CD146(+) cells was observed, thereby providing strong evidence that cells with this phenotype represent functional EPCs. No correlation was found between the numbers of CFU-EC and the blood pressure levels at any time point during the treatment. Hence, nisoldipine-induced mobilization of EPCs might represent a novel mechanism by which this antihypertensive compound independently of its blood pressure-lowering effect contributes to vasoprotection in patients with essential hypertension
Potassium in the Grape (Vitis vinifera L.) Berry: Transport and Function
K+ is the most abundant cation in the grape berry. Here we focus on the most recent information in the long distance transport and partitioning of K+ within the grapevine and postulate on the potential role of K+ in berry sugar accumulation, berry water relations, cellular growth, disease resistance, abiotic stress tolerance and mitigating senescence. By integrating information from several different plant systems we have been able to generate new hypotheses on the integral functions of this predominant cation and to improve our understanding of how these functions contribute to grape berry growth and ripening. Valuable contributions to the study of K+ in membrane stabilization, turgor maintenance and phloem transport have allowed us to propose a mechanistic model for the role of this cation in grape berry development
Confinement Effects in Antiferromagnets
Phase equilibrium in confined Ising antiferromagnets was studied as a
function of the coupling (v) and a magnetic field (h) at the surfaces, in the
presence of an external field H. The ground state properties were calculated
exactly for symmetric boundary conditions and nearest-neighbor interactions,
and a full zero-temperature phase diagram in the plane v-h was obtained for
films with symmetry-preserving surface orientations. The ground-state analysis
was extended to the H-T plane using a cluster-variation free energy. The study
of the finite-T properties (as a function of v and h) reveals the close
interdependence between the surface and finite-size effects and, together with
the ground-state phase diagram, provides an integral picture of the confinement
in anisotropic antiferromagnets with surfaces that preserve the symmetry of the
order parameter.Comment: 10 pages, 8 figures, Accepted in Phys. Rev.
- …