4,887 research outputs found

    Orthogonal invariant sets of the diffusion tensor and the development of a curvilinear set suitable for low-anisotropy tissues.

    Get PDF
    We develop a curvilinear invariant set of the diffusion tensor which may be applied to Diffusion Tensor Imaging measurements on tissues and porous media. This new set is an alternative to the more common invariants such as fractional anisotropy and the diffusion mode. The alternative invariant set possesses a different structure to the other known invariant sets; the second and third members of the curvilinear set measure the degree of orthotropy and oblateness/prolateness, respectively. The proposed advantage of these invariants is that they may work well in situations of low diffusion anisotropy and isotropy, as is often observed in tissues such as cartilage. We also explore the other orthogonal invariant sets in terms of their geometry in relation to eigenvalue space; a cylindrical set, a spherical set (including fractional anisotropy and the mode), and a log-Euclidean set. These three sets have a common structure. The first invariant measures the magnitude of the diffusion, the second and third invariants capture aspects of the anisotropy; the magnitude of the anisotropy and the shape of the diffusion ellipsoid (the manner in which the anisotropy is realised). We also show a simple method to prove the orthogonality of the invariants within a set

    Regenerate or Unregenerate?

    Get PDF

    Quantum scissors: teleportation of single-mode optical states by means of a nonlocal single photon

    Get PDF
    We employ the quantum state of a single photon entangled with the vacuum (|1,0>-|0,1>), generated by a photon incident upon a symmetric beam splitter, to teleport single-mode quantum states of light by means of the Bennett protocol. Teleportation of coherent states results in truncation of their Fock expansion to the first two terms. We analyze the teleported ensembles by means of homodyne tomography and obtain fidelities of up to 99 per cent for low source state amplitudes. This work is an experimental realization of the quantum scissors device proposed by Pegg, Phillips and Barnett (Phys. Rev. Lett. 81, 1604 (1998)

    Small business financing

    Full text link
    Thesis (M.B.A.)--Boston Universit

    Imaging of nuclear magnetic resonance spin–lattice relaxation activation energy in cartilage

    Get PDF
    Samples of human and bovine cartilage have been examined using magnetic resonance imaging to determine the proton nuclear magnetic resonance spin–lattice relaxation time, T1, as a function of depth within through the cartilage tissue. T1 was measured at five to seven temperatures between 8 and 38°C. From this, it is shown that the T1 relaxation time is well described by Arrhenius-type behaviour and the activation energy of the relaxation process is quantified. The activation energy within the cartilage is approximately 11 ± 2 kJ mol−1 with this notably being less than that for both pure water (16.6 ± 0.4 kJ mol−1) and the phosphate-buffered solution in which the cartilage was immersed (14.7 ± 1.0 kJ mol−1). It is shown that this activation energy increases as a function of depth in the cartilage. It is known that cartilage composition varies with depth, and hence, these results have been interpreted in terms of the structure within the cartilage tissue and the association of the water with the macromolecular constituents of the cartilage
    • …
    corecore