5 research outputs found
Silymarin potentiates the anti-inflammatory effects of Celecoxib on chemically induced osteoarthritis in rats
Silymarin (SMN) is used as an antioxidant complex to attenuate the pro-oxidant effects of toxic agents. This study was carried out to investigate the effect of SMN, Celecoxib (CLX) individually and in combination on monoiodoacetate (MIA)-induced osteoarthritis (OA) in rat. Forty adult Wistar rats were assigned to control and test groups. Animals in the test group following OA induction were subdivided into 4 subgroups according to the treatment profile: OA+; received saline normal (5ml/kg, b.w.), OA+CLX+; received CLX (100mg/kg, orally), OA+SMN+, received SMN (50mg/kg, orally), and OA+CLX+SMN+, received both CLX and SMN. The animals received test compounds by gastric gavage for 14 consecutive days. Animals in the OA+ group showed a significant (p<0.01) increase in serum and synovial levels of IL-1β, while both test compounds reduced the IL-1β level. Both CLX and SMN lowered the OA-increased level of malondialdehyde by 77 and 79 and nitric oxide by 73 and 76, respectively, in the synovial tissue. Special safranin O (SO) histopathological staining revealed that CLX and SMN improved the MIA-induced destruction and fibrillation in cartilage surface. CLX and SMN regulated the MIA-up regulated IL-1β at mRNA level. The combination therapy resulted in an additive effect between CLX and SMN in biochemical, histopathological and molecular assays. These findings suggest that SMN exerts anti-inflammatory effect and also potentiates the anti-inflammatory effect of CLX on MIA-induced OA. The anti-inflammatory property of SMN may attribute to its antioxidant capacity, which affects the proinflammatory mediators at translational and transcriptional level
Nutraceutical properties and phytochemical characterization of wild Serbian fruits
Wild fruits grown in Serbia, i.e., elderberry (Sambucus nigra), hawthorn (Crataegus monogyna), cornelian cherry (Cornus mas), and blackthorn (Prunus spinosa), are rich in secondary metabolites. In this study, the polyphenolic composition of wild fruit extracts and their antioxidant capacity were investigated by in vitro assays. Elderberry was characterized by the presence of arbutin (a skin protector), and cornelian cherry by syringic and gallic acids. In blackthorn, at least 11 different phenolic compounds were reported for the first time, including vanillic acid and naringin, the metabolite present in the highest amount. Blackthorn extracts were the richest in polyphenols (11.24-18.70g GAE/kgFW) and had the highest activity in the DPPH radical test (180.93-267.11mMTE/mL), while cornelian cherry extracts showed the most effective ferric ion chelating (81.37-90.66%) and antityrosinase inhibition capacities (21.75-74.23%). No sample was able to scavenge NO. Using the principal component analysis, wild fruit samples were classified into four separate clusters due to distinctive phenolic profiles and antioxidant capacity. Our investigation showed how every fruit could be considered unique in terms of its phytonutrient content. Thus, Serbian wild fruits may be a great source of bioactive natural compounds and could be therefore considered particularly useful in food supplement production. Particularly, as a source of natural antioxidants, these species could be used to extend the shelf life of food products and replace synthetic antioxidants, avoiding potential health risks and toxicity