122 research outputs found

    Isochoric thermal conductivity of solid nitrogen

    Get PDF
    The isochoric thermal conductivity of solid nitrogen has been investigated on four samples of different densities in the temperature interval from 20 K to the onset of melting. In alfa-N2 the isochoric thermal conductivity exhibits a dependence weaker than 1/T; in beta-N2 it increases slightly with temperature. The experimental results are discussed within a model in which the heat is transported by low-frequency phonons or by "diffusive" modes above the mobility boundary. The growth of the thermal conductivity in beta-N2 is attributed to the decreasing "rotational" component of the total thermal resistance, which occurs as the rotational correlations between the neighboring molecules become weaker.Comment: Postscript 12 pages, 3 figures, 1 table. To be published in 200

    Mechanical response of plectonemic DNA: an analytical solution

    Full text link
    We consider an elastic rod model for twisted DNA in the plectonemic regime. The molecule is treated as an impenetrable tube with an effective, adjustable radius. The model is solved analytically and we derive formulas for the contact pressure, twisting moment and geometrical parameters of the supercoiled region. We apply our model to magnetic tweezer experiments of a DNA molecule subjected to a tensile force and a torque, and extract mechanical and geometrical quantities from the linear part of the experimental response curve. These reconstructed values are derived in a self-contained manner, and are found to be consistent with those available in the literature.Comment: 14 pages, 4 figure

    Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching

    Get PDF
    Using single-molecule DNA nanomanipulation, we show that abortive initiation involves DNA "scrunching"-in which RNA polymerase (RNAP) remains stationary and unwinds and pulls downstream DNA into itself-and that scrunching requires RNA synthesis and depends on RNA length. We show further that promoter escape involves scrunching, and that scrunching occurs in most or all instances of promoter escape. Our results support the existence of an obligatory stressed intermediate, with approximately one turn of additional DNA unwinding, in escape and are consistent with the proposal that stress in this intermediate provides the driving force to break RNAP-promoter and RNAP-initiation-factor interactions in escape

    Autoclave modeling of corrosion processes occurring in a gas pipeline during transportation of an unprepared multiphase medium containing CO2

    Get PDF
    The problem of selecting a method for ensuring the reliability of the unprepared fluid transport facilities of an unprepared fluid in the presence of carbon dioxide is considered. Carbon dioxide corrosion is one of the dangerous types of damage to field and main pipelines. It has been shown that dynamic autoclave tests should be carried out during staged laboratory tests in order to determine the intensity of carbon dioxide corrosion and to select the optimal method of protection. A hypothesis about the imperfection of the existing generally accepted approaches to dynamic corrosion testing has been put forward and confirmed. A test procedure based on the use of an autoclave with an overhead stirrer, developed using elements of mathematical modeling, is proposed. The flows created in the autoclave provide corrosive wear of the sample surface similar to the internal surfaces elements wear of the pipelines piping of gas condensate wells. The autoclave makes it possible to simulate the effect of the organic phase on the flow rate and the nature of corrosion damage to the metal surface, as well as the effect of the stirrer rotation speed and, accordingly, the shear stress of the cross section on the corrosion rate in the presence/absence of a corrosion inhibitor. The given results of staged tests make it possible to judge the high efficiency of the developed test procedure
    corecore