1,985 research outputs found

    Fetal Tissue Transplantation: An Ethical Analysis

    Get PDF

    The Effect of Music Tempo on Muscular Endurance During the Bench Press

    Get PDF
    Click the PDF icon to download the abstract

    Synthesis, Characterization and Application of intermetallic Pd-X (Ga, Zn) Nanoparticles derived from ternary Hydrotalcite-like precursors

    No full text
    A novel, feasible synthesis approach for supported intermetallic Pd2Ga and PdZn nanoparticles derived from Hydrotalcite-like compounds (HTlc) is introduced. Ternary HTlc with the nominal composition (Pd2+,M2+)0.70(M3+)0.30(OH)2(CO3)0.15 ∙ m H2O are synthesized by pH-controlled co-precipitation. Mg2+/Ga3+ and Zn2+/Al3+ are chosen as M2+/M3+ combinations to permit formation of the nanocrystalline Pd2Ga and PdZn intermetallic compounds on a porous MgO/MgGa2O4 and ZnO/ZnAl2O4 support, respectively. In addition, a PdMgAl HTlc is prepared as monometallic Pd reference compound on a MgO/MgAl2O4 support. Incorporation of Pd2+ into the HT structure requires octahedral coordination, while Pd2+ ions prefer square planar coordination in aqueous solution. At the same substitution degree of M2+ by Pd2+, complete insertion is achieved for PdZnAl HT. In case of PdMgGa and PdMgAl HT a minor fraction is present as segregated Pd2+ on the external surface of the platelet-like particles with a local environment similar to PdO, i.e. in a square planar coordination. A limit of incorporation into the HT lattice exists at < 1 mol% for the Pd2+ containing precursors. Upon thermal decomposition in reductive atmosphere, intermetallic and metallic nanoparticles ranging from below 2 nm to 6 nm in size and exhibiting monomodal particle size distributions are formed. Alloying of Pd with Ga and Zn changes the crystal structure as well as the electronic structure and leads to the increased formation of isolated adsorption sites at the surface. Furthermore, dynamic surface changes of intermetallic Pd2Ga nanoparticles were noticed at longer exposure time to CO and higher CO coverage. This is attributed to the decomposition into metallic Pd and Ga2O3. The nanostructured Pd2Ga catalyst shows excellent performance in the selective semi-hydrogenation of acetylene similar to a bulk Pd2Ga model catalyst. In comparison to the elemental Pd catalyst the selectivity to ethylene is drastically improved by formation of Pd2Ga. Interestingly, the nanostructered catalyst slowly activates in the feed gas. The activation is triggered faster by a treatment in oxidative atmosphere. These dynamics of the Pd2Ga nanoparticles can be explained by the interplay of surface decomposition into Pd0 and Ga2O3 in oxygen and reversal of the strong-metal support interaction state leading to an increased activity. Furthermore, increased activities and selectivities in methanol steam reforming and methanol synthesis from CO2 are observed for the Pd2Ga and PdZn nanoparticles in contrast to the unmodified Pd particles. These structurally modified Pd catalysts exhibit a considerably lower selectivity to CO and enhanced formation of methanol compared to the monometallic Pd catalyst.Abstract i Zusammenfassung iii Danksagung v List of Figures x List of Tables xiv List of Abbreviations xv Chapter 1: Introduction and Overview 1 1.1. Intermetallic compounds 1 1.2. Motivation 2 1.3. Synthesis strategy for binary Pd-X intermetallic nanoparticles 3 1.4. Pd-Ga system 6 1.5. The Pd-Ga intermetallic compound Pd2Ga 7 1.6. Pd-Zn phase system 9 1.7. Pd-Ga IMCs as selective acetylene hydrogenation catalysts 10 1.8. Pd based IMCs in methanol synthesis and methanol steam reforming 13 1.9. Aims of this work and thesis structure 15 1.10. References 17 Chapter 2: Intermetallic Compound Pd2Ga as a Selective Catalyst for the Semi-Hydrogenation of Acetylene: From Model to High performance Catalyst 21 2.1 Introduction 22 2.2 Experimental Section 24 2.2.1 Synthesis Procedures 24 2.2.2 Characterization Techniques 24 2.2.3 Catalytic Measurements 25 2.3 Results and Discussion 27 2.4 Conclusion 34 2.5 References 36 Chapter 3: Dynamic Surface Processes of nanostructured Pd2Ga catalysts derived from ternary Hydrotalcite-like Precursors 38 3.1 Introduction 39 3.2 Experimental 40 3.2.1 Synthesis conditions 40 3.2.2 Characterization 41 3.2.3 Catalytic performance in the selective hydrogenation of acetylene 43 3.3 Results and Discussion 44 3.3.1 Structural and textural properties of the precursor material 44 3.3.2 Reduction and intermetallic phase formation 49 3.3.3 Structural properties of Pd2Ga nanoparticles 54 3.3.4 IR characterization of supported Pd2Ga nanoparticles during exposure to CO 58 3.3.5 Catalytic performance 62 3.4 Conclusions 69 3.5 References 71 Supplementary Information 73 Chapter 4: Methanol Synthesis and Methanol Steam Reforming of Supported Pd2Ga and PdZn Intermetallic Nanoparticles 79 4.1. Introduction 80 4.2 Experimental 81 4.2.1 Synthesis conditions 81 4.2.2 Characterization 82 4.2.3 Catalytic performance 84 4.2.3.1 Methanol synthesis from CO2 84 4.2.3.2 Methanol steam reforming 85 4.3 Results and discussion 86 4.3.1 Properties of the HTlc precursors 86 4.3.2 Reducibility of the HTlc precursors and IMC formation 88 4.3.2.1 TPR and MS measurements 88 4.3.2.2 XANES measurements 91 4.3.3 Properties of the ex-HTlc samples after reduction 93 4.4 Catalytic properties of the IMCs 97 4.4.1 Methanol synthesis from CO2 97 4.4.2 Steam reforming of methanol 100 4.5 Conclusion 102 4.6 References 103 Supplementary Information 105 Chapter 5: Final summary and conclusion 108 Appendix xvii Curriculum vitae xvii Publications xvii Oral presentations xviii Patent application xviii Poster presentations xi

    Pacific Hake, Merluccius productus, Autecology: A Timely Review

    Get PDF
    Pacific hake, Merluccius productus, the most abundant groundfish in the California Current Large Marine Ecosystem (CCLME), is a species of both commercial significance, supporting a large international fishery, and ecological importance, connecting other species as both predator and prey. Coastal Pacific hake migrations are characterized by movements between northern summer feeding areas and southern winter spawning areas, with variations in annual abundance, distribution, and the extent of these movements associated with varying climate-ocean conditions. In general, warm (cool) years with enhanced (reduced) stratification and poleward (equatorward) transport are often related to good (poor) recruitment, increased (decreased) northward distribution, and reduced (enhanced) growth. However, the classic periodic pattern of annual migration and distribution may no longer be fully representative. Based on recent advances in the understanding of climate-ocean variability off the U.S. west coast, we hypothesize that the annual movements of Pacific hake are more responsive to climate-ocean variability than previously thought, and further, that changes observed in Pacific hake distributions may reflect long-term changes in climate-ocean conditions in the CCLME. Therefore, an updated model of these relations is key to effective monitoring and management of this stock, as well as to devising scenarios of future change in the CCLME as a result of climate variations. The current state of knowledge of the relationship between the Pacific hake and its environment is reviewed, highlighting emerging ideas compared to those of the past, and priorities for future research are suggested

    A Mid-Infrared Imaging Survey of Embedded Young Stellar Objects in the Rho Ophiuchi Cloud Core

    Full text link
    Results of a comprehensive, new, ground-based mid-infrared imaging survey of the young stellar population of the Rho Ophiuchi cloud are presented. Data were acquired at the Palomar 5-m and at the Keck 10-m telescopes with the MIRLIN and LWS instruments, at 0.25 arcsec and 0.25 arcsec resolutions, respectively. Of 172 survey objects, 85 were detected. Among the 22 multiple systems observed, 15 were resolved and their individual component fluxes determined. A plot of the frequency distribution of the detected objects with SED spectral slope shows that YSOs spend ~400,000 yr in the Flat Spectrum phase, clearing out their remnant infall envelopes. Mid-infrared variability is found among a significant fraction of the surveyed objects, and is found to occur for all SED classes with optically thick disks. Large-amplitude near-infrared variability, also found for all SED classes with optically thick disks, seems to occur with somewhat higher frequency at the earlier evolutionary stages. Although a general trend of mid-infrared excess and NIR veiling exists proceeding through SED classes, with Class I objects generally exhibiting K-veilings > 1, Flat Spectrum objects with K-veilings > 0.58, and Class III objects with K-veilings =0, Class II objects exhibit the widest range of K-band veiling values, 0-4.5. However, the highly variable value of veiling that a single source can exhibit in any of the SED classes in which active disk accretion can take place is striking, and is direct observational evidence for highly time-variable accretion activity in disks. Finally, by comparing mid-infrared vs. near-infrared excesses in a subsample with well-determined effective temperatures and extinction values, disk clearing mechanisms are explored. The results are consistent with disk clearing proceeding from the inside-out.Comment: 18 pages + 5 tables + 7 figure

    The role of the "glow phenomenon" in the preparation of sulfated zirconia catalysts

    Get PDF
    During the calcination procedure that is necessary to obtain sulfated zirconia catalysts from hydroxide precursors an exothermic reaction occurs in the heat-up period which can lead to a rapid overheating ('glow') of the sample bed; the batch size is identified as a critical parameter that influences heat transfer and thus the extent of the temperature overshoot and the catalytic activity of the product
    corecore