318 research outputs found
Source Size Limitation from Variabilities of a Lensed Quasar
In the case of gravitationally-lensed quasars, it is well-known that there is
a time delay between occurrence of the intrinsic variabilities in each split
image. Generally, the source of variabilities has a finite size, and there are
time delays even in one image. If the origin of variabilities is widely
distributed, say over \gsim 100 pc as whole, variabilities between split
images will not show a good correlation even though their origin is identical.
Using this fact, we are able to limit the whole source size of variabilities in
a quasar below the limit of direct resolution by today's observational
instruments.Comment: 15 pages LaTeX, 3 figures, accepted to ApJ Letter. e-mail:
[email protected]
Distances and Cosmology From Galaxy Cluster CMB Data
The measurement of angular diameter distance to galaxy clusters, through
combined Sunyaev-Zel'dovich (SZ) effect data with X-ray emission observations,
is now a well-known probe of cosmology. Using a combination of SZ data and a
map of the lensed CMB anisotropies by the galaxy cluster potential, we propose
an alternative geometric technique to measure distance information primarily
through cluster related multi-frequency CMB measurements. We discuss necessary
requirements to implement this measurement, potential errors including
systematic biases, and the extent to which cosmological parameters can be
extracted. While individual cluster distances are not likely to be precise,
with upcoming subarcminute resolution wide-area CMB observations, useful
information on certain cosmological parameters, such as the equation of state
of dark energy, can be obtained from a large sample of galaxy clusters.Comment: 4 pages, 2 figure
New Modeling of the Lensing Galaxy and Cluster of Q0957+561: Implications for the Global Value of the Hubble Constant
The gravitational lens 0957+561 is modeled utilizing recent observations of
the galaxy and the cluster as well as previous VLBI radio data which have been
re-analyzed recently. The galaxy is modeled by a power-law elliptical mass
density with a small core while the cluster is modeled by a non-singular
power-law sphere as indicated by recent observations. Using all of the current
available data, the best-fit model has a reduced chi-squared of approximately 6
where the chi-squared value is dominated by a small portion of the
observational constraints used; this value of the reduced chi-squared is
similar to that of the recent FGSE best-fit model by Barkana et al. However,
the derived value of the Hubble constant is significantly different from the
value derived from the FGSE model. We find that the value of the Hubble
constant is given by H_0 = 69 +18/-12 (1-K) and 74 +18/-17 (1-K) km/s/Mpc with
and without a constraint on the cluster's mass, respectively, where K is the
convergence of the cluster at the position of the galaxy and the range for each
value is defined by Delta chi-squared = reduced chi-squared. Presently, the
best achievable fit for this system is not as good as for PG 1115+080, which
also has recently been used to constrain the Hubble constant, and the
degeneracy is large. Possibilities for improving the fit and reducing the
degeneracy are discussed.Comment: 22 pages in aaspp style including 6 tables and 5 figures, ApJ in
press (Nov. 1st issue
A determination of H_0 with the CLASS gravitational lens B1608+656: II. Mass models and the Hubble constant from lensing
EDITED FROM PAPER: We present mass models of the four-image gravitational
lens system B1608+656. A mass model for the lens galaxies has been determined
that reproduces the image positions, two out of three flux-density ratios and
the model time delays.
Using the time delays determined by Fassnacht et al. (1999a), we find that
the best isothermal mass model gives H_0=59^{+7}_{-6} km/s/Mpc for Omega_m=1
and Omega_l=0.0, or H_0=(65-63)^{+7}_{-6} km/s/Mpc for Omega_m=0.3 and Omega_l
= 0.0-0.7 (95.4% statistical confidence). A systematic error of +/-15 km/s/Mpc
is estimated.
This cosmological determination of H_0 agrees well with determinations from
three other gravitational lens systems (i.e. B0218+357, Q0957+561 and
PKS1830-211), SNe Ia, the S-Z effect and local determinations. The current
agreement on H_0 from four out of five gravitational lens systems (i)
emphasizes the reliability of its determination from isolated gravitational
lens systems and (ii) suggests that a close-to-isothermal mass profile can
describe disk galaxies, ellipticals and central cluster ellipticals.
The average of H_0 from B0218+357, Q0957+561, B1608+656 and PKS1830-211,
gives H_0(GL)=69 +/-7 km/s/Mpc for a flat universe with Omega_m=1 or H_0(GL)=74
+/-8 km/s/Mpc for Omega_m=0.3 and Omega_l=0.0-0.7. When including PG1115+080,
these values decrease to 64 +/-11 km/s/Mpc and 68 +/-13 km/s/Mpc (2-sigma
errors), respectively.Comment: Accepted for publication in ApJ. 34 pages, 4 figure
Constraining H0 from Chandra Observations of Q0957+561
We report the detection of the lens cluster of the gravitational lens (GL)
system Q0957+561 from a deep observation with the Advanced CCD Imaging
Spectrometer on-board the Chandra X-ray Observatory. Intracluster X-ray
emission is found to be centered 4.3 +/- 1.3 arcsec east and 3.5(-0.6,+1.3)
arcsec north of image B, nearer than previous estimates. Its spectrum can be
modeled well with a thermal plasma model consistent with the emission
originating from a cluster at a redshift of 0.36. Our best-fit estimates of the
cluster temperature of T_e = 2.09(-0.54,+0.83) keV (90 percent confidence) and
mass distribution of the cluster are used to derive the convergence parameter
kappa, the ratio of the cluster surface mass density to the critical density
required for lensing. We estimate the convergence parameter at the location of
the lensed images A and B to be kappa_A = 0.22(+0.14,-0.07) and kappa_B =
0.21(+0.12,-0.07), respectively (90 percent confidence levels). The observed
cluster center, mass distribution and convergence parameter kappa provide
additional constraints to lens models of this system. Our new results break a
mass-sheet degeneracy in GL models of this system and provide better
constraints of ~ 29 percent (90 percent confidence levels) on the Hubble
constant. We also present results from the detection of the most distant X-ray
jet (z = 1.41) detected to date. The jet extends approximately 8 arcsec NE of
image A and three knots are resolved along the X-ray jet with flux densities
decreasing with distance from the core. The observed radio and optical flux
densities of the knots are fitted well with a synchrotron model and the X-ray
emission is modeled well with inverse Compton scattering of Cosmic Microwave
Background photons by synchrotron-emitting electrons in the jet.Comment: 18 pages, includes 7 figures, Accepted for publication in Ap
Improved Parameters and New Lensed Features for Q0957+561 from WFPC2 Imaging
New HST WFPC2 observations of the lensed double QSO 0957+561 will allow
improved constraints on the lens mass distribution and hence will improve the
derived value of H. We first present improved optical positions and
photometry for the known components of this lens. The optical separation
between the A and B quasar images agrees with VLBI data at the 10 mas level,
and the optical center of the primary lensing galaxy G1 coincides with the VLBI
source G' to within 10 mas. The best previous model for this lens (Grogin and
Narayan 1996) is excluded by these data and must be reevaluated.
Several new resolved features are found within 10\arcsec of G1, including an
apparent fold arc with two bright knots. Several other small galaxies are
detected, including two which may be multiple images of each other. We present
positions and crude photometry of these objects.Comment: 7 pages including 2 postscript figures, LaTeX, emulateapj style. Also
available at
http://www.astro.lsa.umich.edu:80/users/philf/www/papers/list.htm
Microlens Parallaxes with SIRTF
The Space Infrared Telescope Facility (SIRTF) will drift away from the Earth
at about 0.1 AU/yr. Microlensing events will therefore have different
characteristics as seen from the satellite and the Earth. From the difference,
it is possible in principle to measure v-tilde, the transverse velocity of the
lens projected onto the observer plane. Since v-tilde has very different values
for different populations (disk, halo, Large Magellanic Cloud), such
measurements could help identify the location, and hence the nature, of the
lenses. I show that the method previously developed by Gould for measuring such
satellite parallaxes fails completely in the case of SIRTF: it is overwhelmed
by degeneracies which arise from fact that the Earth and satellite observations
are in different band passes. I develop a new method which allows for
observations in different band passes and yet removes all degeneracies. The
method combines a purely ground-based measurement of the "parallax asymmetry"
with a measurement of the delay between the time the event peaks at the Earth
and satellite. In effect, the parallax asymmetry determines the component of
v-tilde in the Earth-Sun direction, while the delay time measures the component
of v-tilde in the direction of the Earth's orbit.Comment: 21 pages plus 3 figure
Probing For Machos of Mass - with Gamma-Ray Burst Parallax Spacecraft
Two spacecraft separated by \sim 1\,\au and equipped with gamma-ray burst
(GRB) detectors could detect or rule out a cosmological density of Massive
Compact Halo Objects (MACHOs) in the mass range 10^{-15} M_{\odot}\lsim M
\lsim 10^{-7} M_{\odot} provided that GRBs prove to be cosmological.
Previously devised methods for detecting MACHOs have spanned the mass range
10^{-16} M_{\odot}\lsim M \lsim 10^{7} M_{\odot}, but with a gap of several
orders of magnitude near . For MACHOs and sources both at a
cosmological distance, the Einstein radius is \sim 1\,\au\,(M/10^{-7}
M_\odot)^{1/2}. Hence, if a GRB lies within the Einstein ring of a MACHO of
mass M\lsim 10^{-7}M_\odot as seen by one detector, it will not lie in the
Einstein ring as seen by a second detector \sim 1\,\au away. This implies
that if GRBs are measured to have significantly different fluxes by the two
detectors, this would signal the presence of a MACHO \lsim 10^{-7}M_\odot. By
the same token, if the two detectors measured similar fluxes for several
hundred events a cosmological abundance of such low-mass MACHOs would be ruled
out. The lower limit of sensitivity, M\lsim 10^{-15}M_\odot is set by the
finite size of the source. If low-mass MACHOs are detected, there are tests
which can discriminate among events generated by MACHOs in the three mass
ranges M\lsim 10^{-12}\,M_\odot, 10^{-12}\,M_\odot\lsim M\lsim
10^{-7}\,M_\odot, and M\gsim 10^{-7}\ M_\odot. Further experiments would
then be required to make more accurate mass measurements.Comment: 8 pages, uuencoded postscript, no figure
Small-Angle Scattering of X-Rays from Extragalactic Sources by Dust in Intervening Galaxies
Gamma-ray bursts are now known to be a cosmological population of objects,
which are often accompanied by X-ray and optical afterglows. The total energy
emitted in the afterglow can be similar to the energy radiated in the gamma-ray
burst itself. If a galaxy containing a large column density of dust is near the
line of sight to a gamma-ray burst, small-angle scattering of the X-rays due to
diffraction by the dust grains will give rise to an X-ray echo of the
afterglow. A measurement of the angular size of the echo at a certain time
after the afterglow is observed yields a combination of the angular diameter
distances to the scattering galaxy and the gamma-ray burst that can be used to
constrain cosmological models in the same way as a time delay in a
gravitational lens. The scattering galaxy will generally cause gravitational
lensing as well, and this should modify the shape of the X-ray echo from a
circular ring.
The main difficulty in detecting this phenomenon is the very low flux
expected for the echo. The flux can be increased when the gamma-ray burst is
highly magnified by gravitational lensing, or when the deflecting galaxy is at
low redshift. X-ray echos of continuous (but variable) sources, such as
quasars, may also be detectable with high-resolution instruments and would
allow similar measurements.Comment: To be published in Ap
A comparison of approximate gravitational lens equations and a proposal for an improved new one
Keeping the exact general relativistic treatment of light bending as a
reference, we compare the accuracy of commonly used approximate lens equations.
We conclude that the best approximate lens equation is the Ohanian lens
equation, for which we present a new expression in terms of distances between
observer, lens and source planes. We also examine a realistic gravitational
lensing case, showing that the precision of the Ohanian lens equation might be
required for a reliable treatment of gravitational lensing and a correct
extraction of the full information about gravitational physics.Comment: 11 pages, 6 figures, to appear on Physical Review
- âŠ