399 research outputs found

    Abstract rules drive adaptation in the subcortical sensory pathway

    Get PDF
    The subcortical sensory pathways are the fundamental channels for mapping the outside world to our minds. Sensory pathways efficiently transmit information by adapting neural responses to the local statistics of the sensory input. The long-standing mechanistic explanation for this adaptive behaviour is that neural activity decreases with increasing regularities in the local statistics of the stimuli. An alternative account is that neural coding is directly driven by expectations of the sensory input. Here, we used abstract rules to manipulate expectations independently of local stimulus statistics. The ultra-high-field functional-MRI data show that abstract expectations can drive the response amplitude to tones in the human auditory pathway. These results provide first unambiguous evidence of abstract processing in a subcortical sensory pathway. They indicate that the neural representation of the outside world is altered by our prior beliefs even at initial points of the processing hierarchy

    Single-cell analysis of long non-coding RNAs in the developing human neocortex

    Get PDF
    Single cell transcriptomics of lncRNA expression in K562 cell cultures. A Distributions of median lncRNA expression to median mRNA expression ratios (lncRNA:mRNA) in populations, in silico merged single cells, and single cells from K562 cultures. B Proportion of K562 cells that expressed each lncRNA (blue) and mRNA (red), separated by maximum expression in single cells. C Same as in (B) but grouped by maximum expression quantile. D Distributions of non-zero lncRNA (blue) and mRNA (red) expression in 46 single K562 cells. Green squares, housekeeping genes; black triangles, ERCC Spike-In Controls. (PDF 454 kb

    1Identification of genes differentially expressed in the embryonic pig cerebral cortex before and after appearance of gyration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammalian evolution is characterized by a progressive expansion of the surface area of the cerebral cortex, an increase that is accompanied by gyration of the cortical surface. The mechanisms controlling this gyration process are not well characterized but mutational analyses indicate that genes involved in neuronal migration play an important function. Due to the lack of gyration of the rodent brain it is important to establish alternative models to examine brain development during the gyration process. The pig brain is gyrated and accordingly is a candidate alternative model.</p> <p>Findings</p> <p>In this study we have identified genes differentially expressed in the pig cerebral cortex before and after appearance of gyration. Pig cortical tissue from two time points in development representing a non-folded, lissencephalic, brain (embryonic day 60) and primary-folded, gyrencephalic, brain (embryonic day 80) were examined by whole genome expression microarray studies. 91 differentially expressed transcripts (fold change >3) were identified. 84 transcripts were annotated and encoding proteins involved in for example neuronal migration, calcium binding, and cytoskeletal structuring. Quantitative real-time PCR was used to confirm the regulation of a subset of the identified genes.</p> <p>Conclusion</p> <p>This study provides identification of genes which are differentially expressed in the pig cerebral cortex before and after appearance of brain gyration. The identified genes include novel candidate genes which could have functional importance for brain development.</p

    Well-Being as Harmony

    Get PDF
    In this paper, I sketch out a novel theory of well-being according to which well-being is constituted by harmony between mind and world. The notion of harmony I develop has three aspects. First there is correspondence between mind and world in the sense that events in the world match the content of our mental states. Second there is positive orientation towards the world, meaning that we have pro-attitudes towards the world we find ourselves in. Third there is fitting response to the world. Taken together these three aspects make up an ideal of being attuned to, or at home in, the world. Such harmony between mind and world constitutes well-being. Its opposite – being disoriented, ill-at-ease in, or hostile to the world – makes a life go poorly. And, as we shall see, many of the things that intuitively contribute to well-being are instantiating one or more of the three aspects of harmony

    Oligodendrocyte Death in Pelizaeus-Merzbacher Disease Is Rescued by Iron Chelation.

    Get PDF
    Pelizaeus-Merzbacher disease (PMD) is an X-linked leukodystrophy caused by mutations in Proteolipid Protein 1 (PLP1), encoding a major myelin protein, resulting in profound developmental delay and early lethality. Previous work showed involvement of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathways, but poor PLP1 genotype-phenotype associations suggest additional pathogenetic mechanisms. Using induced pluripotent stem cell (iPSC) and gene-correction, we show that patient-derived oligodendrocytes can develop to the pre-myelinating stage, but subsequently undergo cell death. Mutant oligodendrocytes demonstrated key hallmarks of ferroptosis including lipid peroxidation, abnormal iron metabolism, and hypersensitivity to free iron. Iron chelation rescued mutant oligodendrocyte apoptosis, survival, and differentiationin vitro, and post-transplantation in vivo. Finally, systemic treatment of Plp1 mutant Jimpy mice with deferiprone, a small molecule iron chelator, reduced oligodendrocyte apoptosis and enabled myelin formation. Thus, oligodendrocyte iron-induced cell death and myelination is rescued by iron chelation in PMD pre-clinical models.H.N. acknowledges postdoctoral fellowship support from the European Leukodystrophy Association, and career transition fellowship support from National Multiple Sclerosis Society. M.C. acknowledges funding support from Career Development Grant awarded by Cerebral Palsy Alliance Research Foundation Inc. This work was supported by funding from the National Multiple Sclerosis Foundation (to M.W., D.H. R.), the European Leukodystrophy Association and the New York Stem Cell Foundation (to M.W.), and Action Medical Research, the Adelson Medical Research Foundation, the National Institute for Health Research Cambridge Biomedical Research Centre and the European Research Council (to D.H. R)

    Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.

    Get PDF
    New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved
    • …
    corecore