615 research outputs found

    Extensive reuse of soda-lime waste glass in fly ash-based geopolymers

    Get PDF
    The possibility of extensive incorporation of soda-lime waste glass in the synthesis of fly ash-based geopolymers was investigated. Using waste glass as silica supplier avoids the use of water glass solution as chemical activator. The influence of the addition of waste glass on the microstructure and strength of fly ash-based geopolymers was studied through microstructural and mechanical characterization. Leaching analyses were also carried out. The samples were developed changing the SiO2/Al2O3 molar ratio and the molarity of the sodium hydroxide solution used as alkaline activator. The results suggest that increasing the amount of waste glass as well as increasing the molarity of the solution lead to the formation of zeolite crystalline phases and an improvement of the mechanical strength. Leaching results confirmed that the new geopolymers have the capability to immobilize heavy metal ions

    Fracture behaviour of refractory ceramics after cyclic thermal shock

    Get PDF
    Two commercially available refractory ceramic materials primary used as substrates for fast firing of porcelain stoneware were investigated. The first one, commercially known as CONC, contains cordierite and mullite in the ratio 50:50. The REFO refractory composite material with coarser microstructure compared to CONC has a cordierite-to-mullite ratio of 50:45 and the balance is filled by quartz. Both materials were exposed to water-quench tests from 1250 degrees C, applying various numbers of thermal cycles (shocks). Subsequently the fracture toughness was evaluated on both as-received and shocked samples using the Chevron notched specimen technique. The results were analysed with respect to the microstructure damage caused by the thermal loading. Scanning electron microscopy was used to analyse both microstructure and fracture surfaces in samples with different thermal loading history

    Characterization of thermal shock damage in cordierite-mullite refractory materials by non-destructive methods.

    Get PDF
    Ultrasonic pulse velocity testing and image anal. were used to predict thermal stability of refractories. Two cordierite-mullite compns. used as substrates in fast firing of porcelain whiteware characterized by different microstructure morphologies and crack propagation behavior were investigated. The measurement of the ultrasonic velocity was used to assess the material degrdn. with increasing thermal shock cycles and specimen damage was monitored using image anal. and further results of material degrdn. were obtained. A brief discussion about the correlation between thermomech. properties, microstructure, crack propagation behavior and thermal shock resistance is presented. Moreover, empirical models are developed to predict thermomech. properties from ultrasonic velocity and surface damage measurements. Then, service life prediction models of refractory plates from measured values of ultrasonic velocities in plates in the as-received state are presented

    Recent advances on spinel-based protective coatings for solid oxide cell metallic interconnects produced by electrophoretic deposition

    Get PDF
    The application of ceramic protective coatings to the metallic interconnects in solid oxide cells (SOCs) is a viable and effective method to limit interconnect degradation issues. This featured letter provides a critical overview of the main outcomes of current research on the use of the electrophoretic deposition (EPD) technique to produce protective coatings for SOC metallic interconnects, specifically focusing on different approaches to stabilise spinel-based suspensions, as well as the possible sintering procedures. The protective properties of EPD coatings are reviewed and discussed in terms of oxidation kinetics and area specific resistance evaluation

    Estudio del daño por choque térmico en materiales compuestos de matriz de vidrio reforzados con fibras de carburo de silicio

    Get PDF
    The development of microstructural damage in silicon carbide fibre (Nicalon™) reinforced glass matrix composite samples subjected to thermal shock was investigated by using a nondestructive forced resonance technique and fibre push out indentation tests. Thermal shock testing involved quenching samples in a water bath maintained at room temperature from a high temperature (650ºC). Changes in the Young's modulus and internal friction of the samples with increasing number of shocks were measured accurately by the forced resonance technique. Fibre push-out tests showed no significant changes in the properties of the fibre-matrix interface, indicating that damage in the composite was concentrated mainly in the development of matrix microcracking. It was also shown that the internal friction is a very sensitive parameter by which to detect the onset and development of such microcracking. A simple semi-empirical model is proposed to correlate the internal friction level with the microcracking density in the glass matrix. Finally, the relevance of detecting nondestructively the existence of microcracks in the glass matrix, before any significant interfacial degradation occurs, is emphasized, in conextion with the possibility of inducing a crack healing process by a thermal treatment (annealing), taking advantage of the viscous flow properties of the glass.El desarrollo de daño microestructural en materiales compuestos de matriz de vidrio reforzados con fibras de carburo de silicio (Nicalon™) sometidos a choque térmico fue investigado mediante la técnica no-destructiva de resonancia forzada y por mediciones de indentación "push-out" de fibras. Los ensayos de choque térmico involucraron el enfriamiento brusco en un baño de agua a temperatura ambiente de las piezas previamente calentadas a una temperatura elevada (650ºC). La técnica de resonancia forzada permitió medir cambios en el módulo de Young de elasticidad y en la fricción interna de las muestras, ocurridos al aumentar el número de choques térmicos como consecuencia del daño microestructural inducido. La investigación del "push-out" de fibras mostró que las propiedades de la interfase fibra/matriz no variaron apreciablemente bajo las condiciones de choque térmico estudiadas. Los resultados demostraron que la única forma de daño microestructural inducido por choque térmico en el material compuesto fue el agrietamiento de la matriz de vidrio. Además se observó que la fricción interna es un parámetro altamente sensible para detectar el inicio y desarrollo de tal agrietamiento. Se presenta un modelo semi-empírico simple, el cual permite correlacionar el nivel de fricción interna medido con la densidad de agrietamiento de la matriz de vidrio. Finalmente, se dedica especial atención a la importancia de detectar en forma no-destructiva la presencia de microgrietas en ¡a matriz de vidrio, en conexión con la posibilidad de inducir un proceso de curado de tales microgrietas mediante un tratamiento térmico, aprovechando el flujo viscoso del vidrio

    Novel geopolymers incorporating red mud and waste glass cullet

    Get PDF
    Red mud presents significant environmental problems, so that its incorporation in geopolymers could represent an alternative solution to produce valuable products from this residue. Novel geopolymers using red mud as source of alumina and waste glass as silica supplier were developed, using sodium hydroxide as the only ` non- waste' material. The formation of a homogeneous polymeric gel, confirmed by solid- state NMR and EDX analysis, promoted the stabilization of possible pollutants. Moreover, the materials exhibit a remarkable compressive strength (up to 45 MPa, for 60 wt% red mud)

    Electrophoretic co-deposition of Mn1.5Co1.5O4, Fe2O3 and CuO: Unravelling the effect of simultaneous addition of Cu and Fe on the microstructural, thermo-mechanical and corrosion properties of in-situ modified spinel coatings for solid oxide cell interconnects

    Get PDF
    A systematic microstructural, thermo-mechanical and electrical characterization of simultaneous Fe–Cu doped Mn–Co spinel coatings processed by electrophoretic co-deposition on Crofer 22 APU is here reported and discussed. An innovative approach for the simultaneous electrophoretic deposition of three spinel precursors is designed, conceived and optimised, with the aim of outlining time- and energy-saving spinel modification routes. The effect of different levels of Cu and Fe co-doping is observed on the stability of the modified Mn–Co spinel phase, the coefficient of thermal expansion (CTE), the corrosion resistance and on the densification behaviour of the obtained coatings. Cu determines an increase of CTE, while Fe has the opposite behavior. The synergic effect of the simultaneous Fe and Cu co-doping results in an improved densification and the stabilization of the MnCo2O4 cubic phase. The most interesting results in terms of corrosion resistance are obtained for the Mn1.28Co1.28Fe0.15Cu0.29O4 spinel

    Fabrication of gelatin methacrylate (GelMA) scaffolds with nano- and micro-topographical and morphological features

    Get PDF
    The design of biomimetic biomaterials for cell culture has become a great tool to study and understand cell behavior, tissue degradation, and lesion. Topographical and morphological features play an important role in modulating cell behavior. In this study, a dual methodology was evaluated to generate novel gelatin methacrylate (GelMA)-based scaffolds with nano and micro topographical and morphological features. First, electrospinning parameters and crosslinking processes were optimized to obtain electrospun nanofibrous scaffolds. GelMA mats were characterized by SEM, FTIR, DSC, TGA, contact angle, and water uptake. Various nanofibrous GelMA mats with defect-free fibers and stability in aqueous media were obtained. Then, micropatterned molds produced by photolithography were used as collectors in the electrospinning process. Thus, biocompatible GelMA nanofibrous scaffolds with micro-patterns that mimic extracellular matrix were obtained successfully by combining two micro/nanofabrication techniques, electrospinning, and micromolding. Taking into account the cell viability results, the methodology used in this study could be considered a valuable tool to develop patterned GelMA based nanofibrous scaffolds for cell culture and tissue engineering.Fil: Aldana, Ana Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Malatto, Laura. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Rehman, M. A. U.. Universitat Erlangen-Nuremberg; AlemaniaFil: Boccaccini, A. R.. Universitat Erlangen-Nuremberg; AlemaniaFil: Abraham, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentin
    • …
    corecore