148 research outputs found

    Characterizing Spatiotemporal Dynamics of Methane Emissions from Rice Paddies in Northeast China from 1990 to 2010

    Get PDF
    BACKGROUND: Rice paddies have been identified as major methane (CH(4)) source induced by human activities. As a major rice production region in Northern China, the rice paddies in the Three-Rivers Plain (TRP) have experienced large changes in spatial distribution over the recent 20 years (from 1990 to 2010). Consequently, accurate estimation and characterization of spatiotemporal patterns of CHâ‚„ emissions from rice paddies has become an pressing issue for assessing the environmental impacts of agroecosystems, and further making GHG mitigation strategies at regional or global levels. METHODOLOGY/PRINCIPAL FINDINGS: Integrating remote sensing mapping with a process-based biogeochemistry model, Denitrification and Decomposition (DNDC), was utilized to quantify the regional CH(4) emissions from the entire rice paddies in study region. Based on site validation and sensitivity tests, geographic information system (GIS) databases with the spatially differentiated input information were constructed to drive DNDC upscaling for its regional simulations. Results showed that (1) The large change in total methane emission that occurred in 2000 and 2010 compared to 1990 is distributed to the explosive growth in amounts of rice planted; (2) the spatial variations in CHâ‚„ fluxes in this study are mainly attributed to the most sensitive factor soil properties, i.e., soil clay fraction and soil organic carbon (SOC) content, and (3) the warming climate could enhance CHâ‚„ emission in the cool paddies. CONCLUSIONS/SIGNIFICANCE: The study concluded that the introduction of remote sensing analysis into the DNDC upscaling has a great capability in timely quantifying the methane emissions from cool paddies with fast land use and cover changes. And also, it confirmed that the northern wetland agroecosystems made great contributions to global greenhouse gas inventory

    Climate-smart agriculture practices for mitigating greenhouse gas emissions

    Get PDF
    Agricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic globalwarming effect.Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20-40% of the soil organic carbon (SOC) is lost over time, following cultivation.We thus need to develop management practices that can maintain or even increase SOC storage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate-smart agriculture (CSA). Climate-smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil C sequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems

    CUPID: New System for Scintillating Screen based Diagnostics

    Get PDF
    We are developing two-layered Yttrium Barium Copper Oxide (YBCO) thin film structures for energy efficient data links for superconducting electronics and present the results of their property measurements. High temperature superconductors (HTS) are advantageous for the implementation of energy-efficient cables interconnecting low temperature superconductor-based circuits and other cryogenic electronics circuits at higher temperature stages. The advantages of the HTS cables come from their low loss and low dispersion properties, allowing ballistic transfer of low power signals with very high bandwidth, low heat conduction and negligible inter-line crosstalk. The microstrip line cable geometry for typical materials is a two-layered film, in which the two superconducting layers are separated by an insulation layer with a minimized permittivity. We have made a proof of concept design of two YBCO films grown by pulsed laser deposition and then assembled into a sandwich with uniform insulating interlayer of tens of micrometers thick. We report on results obtained from such systems assembled in different ways. Structural and electromagnetic properties have been examined on individual films and on the corresponding sandwich composite. © 2013 IEEE
    • …
    corecore