63 research outputs found
Secrecy in Untrusted Networks
We investigate the protection of migrating agents against the untrusted sites they traverse. The resulting calculus provides a formal framework to reason about protection policies and security protocols over distributed, mobile infrastructures, and aims to stand to ambients as the spi calculus stands to ?. We present a type system that separates trusted and untrusted data and code, while allowing safe interactions with untrusted sites. We prove that the type system enforces a privacy property, and show the expressiveness of the calculus via examples and an encoding of the spi calculus
Differential co-expression framework to quantify goodness of biclusters and compare biclustering algorithms
<p>Abstract</p> <p>Background</p> <p>Biclustering is an important analysis procedure to understand the biological mechanisms from microarray gene expression data. Several algorithms have been proposed to identify biclusters, but very little effort was made to compare the performance of different algorithms on real datasets and combine the resultant biclusters into one unified ranking.</p> <p>Results</p> <p>In this paper we propose differential co-expression framework and a differential co-expression scoring function to objectively quantify quality or goodness of a bicluster of genes based on the observation that genes in a bicluster are co-expressed in the conditions belonged to the bicluster and not co-expressed in the other conditions. Furthermore, we propose a scoring function to stratify biclusters into three types of co-expression. We used the proposed scoring functions to understand the performance and behavior of the four well established biclustering algorithms on six real datasets from different domains by combining their output into one unified ranking.</p> <p>Conclusions</p> <p>Differential co-expression framework is useful to provide quantitative and objective assessment of the goodness of biclusters of co-expressed genes and performance of biclustering algorithms in identifying co-expression biclusters. It also helps to combine the biclusters output by different algorithms into one unified ranking i.e. meta-biclustering.</p
DeBi: Discovering Differentially Expressed Biclusters using a Frequent Itemset Approach
<p>Abstract</p> <p>Background</p> <p>The analysis of massive high throughput data via clustering algorithms is very important for elucidating gene functions in biological systems. However, traditional clustering methods have several drawbacks. Biclustering overcomes these limitations by grouping genes and samples simultaneously. It discovers subsets of genes that are co-expressed in certain samples. Recent studies showed that biclustering has a great potential in detecting marker genes that are associated with certain tissues or diseases. Several biclustering algorithms have been proposed. However, it is still a challenge to find biclusters that are significant based on biological validation measures. Besides that, there is a need for a biclustering algorithm that is capable of analyzing very large datasets in reasonable time.</p> <p>Results</p> <p>Here we present a fast biclustering algorithm called DeBi (Differentially Expressed BIclusters). The algorithm is based on a well known data mining approach called frequent itemset. It discovers maximum size homogeneous biclusters in which each gene is strongly associated with a subset of samples. We evaluate the performance of DeBi on a yeast dataset, on synthetic datasets and on human datasets.</p> <p>Conclusions</p> <p>We demonstrate that the DeBi algorithm provides functionally more coherent gene sets compared to standard clustering or biclustering algorithms using biological validation measures such as Gene Ontology term and Transcription Factor Binding Site enrichment. We show that DeBi is a computationally efficient and powerful tool in analyzing large datasets. The method is also applicable on multiple gene expression datasets coming from different labs or platforms.</p
Evolutionary Algorithm Based on New Crossover for the Biclustering of Gene Expression Data
Microarray represents a recent multidisciplinary technology. It measures the expression levels of several genes under different biological conditions, which allows to generate multiple data. These data can be analyzed through biclustering method to determinate groups of genes presenting a similar behavior under specific groups of conditions.
This paper proposes a new evolutionary algorithm based on a new crossover method, dedicated to the biclustering of gene expression data. This proposed crossover method ensures the creation of new biclusters with better quality. To evaluate its performance, an experimental study was done on real microarray datasets. These experimentations show that our algorithm extracts high quality biclusters with highly correlated genes that are particularly involved in specific ontology structure
Discovery of error-tolerant biclusters from noisy gene expression data
An important analysis performed on microarray gene-expression data is to discover biclusters, which denote groups of genes that are coherently expressed for a subset of conditions. Various biclustering algorithms have been proposed to find different types of biclusters from these real-valued gene-expression data sets. However, these algorithms suffer from several limitations such as inability to explicitly handle errors/noise in the data; difficulty in discovering small bicliusters due to their top-down approach; inability of some of the approaches to find overlapping biclusters, which is crucial as many genes participate in multiple biological processes. Association pattern mining also produce biclusters as their result and can naturally address some of these limitations. However, traditional association mining only finds exact biclusters, whic
QServer: A Biclustering Server for Prediction and Assessment of Co-Expressed Gene Clusters
BACKGROUND: Biclustering is a powerful technique for identification of co-expressed gene groups under any (unspecified) substantial subset of given experimental conditions, which can be used for elucidation of transcriptionally co-regulated genes. RESULTS: We have previously developed a biclustering algorithm, QUBIC, which can solve more general biclustering problems than previous biclustering algorithms. To fully utilize the analysis power the algorithm provides, we have developed a web server, QServer, for prediction, computational validation and analyses of co-expressed gene clusters. Specifically, the QServer has the following capabilities in addition to biclustering by QUBIC: (i) prediction and assessment of conserved cis regulatory motifs in promoter sequences of the predicted co-expressed genes; (ii) functional enrichment analyses of the predicted co-expressed gene clusters using Gene Ontology (GO) terms, and (iii) visualization capabilities in support of interactive biclustering analyses. QServer supports the biclustering and functional analysis for a wide range of organisms, including human, mouse, Arabidopsis, bacteria and archaea, whose underlying genome database will be continuously updated. CONCLUSION: We believe that QServer provides an easy-to-use and highly effective platform useful for hypothesis formulation and testing related to transcription co-regulation
A polynomial time biclustering algorithm for finding approximate expression patterns in gene expression time series
<p>Abstract</p> <p>Background</p> <p>The ability to monitor the change in expression patterns over time, and to observe the emergence of coherent temporal responses using gene expression time series, obtained from microarray experiments, is critical to advance our understanding of complex biological processes. In this context, biclustering algorithms have been recognized as an important tool for the discovery of local expression patterns, which are crucial to unravel potential regulatory mechanisms. Although most formulations of the biclustering problem are NP-hard, when working with time series expression data the interesting biclusters can be restricted to those with contiguous columns. This restriction leads to a tractable problem and enables the design of efficient biclustering algorithms able to identify all maximal contiguous column coherent biclusters.</p> <p>Methods</p> <p>In this work, we propose <it>e</it>-CCC-Biclustering, a biclustering algorithm that finds and reports all maximal contiguous column coherent biclusters with approximate expression patterns in time polynomial in the size of the time series gene expression matrix. This polynomial time complexity is achieved by manipulating a discretized version of the original matrix using efficient string processing techniques. We also propose extensions to deal with missing values, discover anticorrelated and scaled expression patterns, and different ways to compute the errors allowed in the expression patterns. We propose a scoring criterion combining the statistical significance of expression patterns with a similarity measure between overlapping biclusters.</p> <p>Results</p> <p>We present results in real data showing the effectiveness of <it>e</it>-CCC-Biclustering and its relevance in the discovery of regulatory modules describing the transcriptomic expression patterns occurring in <it>Saccharomyces cerevisiae </it>in response to heat stress. In particular, the results show the advantage of considering approximate patterns when compared to state of the art methods that require exact matching of gene expression time series.</p> <p>Discussion</p> <p>The identification of co-regulated genes, involved in specific biological processes, remains one of the main avenues open to researchers studying gene regulatory networks. The ability of the proposed methodology to efficiently identify sets of genes with similar expression patterns is shown to be instrumental in the discovery of relevant biological phenomena, leading to more convincing evidence of specific regulatory mechanisms.</p> <p>Availability</p> <p>A prototype implementation of the algorithm coded in Java together with the dataset and examples used in the paper is available in <url>http://kdbio.inesc-id.pt/software/e-ccc-biclustering</url>.</p
A Novel Biclustering Approach to Association Rule Mining for Predicting HIV-1–Human Protein Interactions
Identification of potential viral-host protein interactions is a vital and useful approach towards development of new drugs targeting those interactions. In recent days, computational tools are being utilized for predicting viral-host interactions. Recently a database containing records of experimentally validated interactions between a set of HIV-1 proteins and a set of human proteins has been published. The problem of predicting new interactions based on this database is usually posed as a classification problem. However, posing the problem as a classification one suffers from the lack of biologically validated negative interactions. Therefore it will be beneficial to use the existing database for predicting new viral-host interactions without the need of negative samples. Motivated by this, in this article, the HIV-1–human protein interaction database has been analyzed using association rule mining. The main objective is to identify a set of association rules both among the HIV-1 proteins and among the human proteins, and use these rules for predicting new interactions. In this regard, a novel association rule mining technique based on biclustering has been proposed for discovering frequent closed itemsets followed by the association rules from the adjacency matrix of the HIV-1–human interaction network. Novel HIV-1–human interactions have been predicted based on the discovered association rules and tested for biological significance. For validation of the predicted new interactions, gene ontology-based and pathway-based studies have been performed. These studies show that the human proteins which are predicted to interact with a particular viral protein share many common biological activities. Moreover, literature survey has been used for validation purpose to identify some predicted interactions that are already validated experimentally but not present in the database. Comparison with other prediction methods is also discussed
A visual analytics approach for understanding biclustering results from microarray data
Abstract Background Microarray analysis is an important area of bioinformatics. In the last few years, biclustering has become one of the most popular methods for classifying data from microarrays. Although biclustering can be used in any kind of classification problem, nowadays it is mostly used for microarray data classification. A large number of biclustering algorithms have been developed over the years, however little effort has been devoted to the representation of the results. Results We present an interactive framework that helps to infer differences or similarities between biclustering results, to unravel trends and to highlight robust groupings of genes and conditions. These linked representations of biclusters can complement biological analysis and reduce the time spent by specialists on interpreting the results. Within the framework, besides other standard representations, a visualization technique is presented which is based on a force-directed graph where biclusters are represented as flexible overlapped groups of genes and conditions. This microarray analysis framework (BicOverlapper), is available at http://vis.usal.es/bicoverlapper Conclusion The main visualization technique, tested with different biclustering results on a real dataset, allows researchers to extract interesting features of the biclustering results, especially the highlighting of overlapping zones that usually represent robust groups of genes and/or conditions. The visual analytics methodology will permit biology experts to study biclustering results without inspecting an overwhelming number of biclusters individually.</p
- …