1,550 research outputs found
Uniform Substitution for Differential Game Logic
This paper presents a uniform substitution calculus for differential game
logic (dGL). Church's uniform substitutions substitute a term or formula for a
function or predicate symbol everywhere. After generalizing them to
differential game logic and allowing for the substitution of hybrid games for
game symbols, uniform substitutions make it possible to only use axioms instead
of axiom schemata, thereby substantially simplifying implementations. Instead
of subtle schema variables and soundness-critical side conditions on the
occurrence patterns of logical variables to restrict infinitely many axiom
schema instances to sound ones, the resulting axiomatization adopts only a
finite number of ordinary dGL formulas as axioms, which uniform substitutions
instantiate soundly. This paper proves soundness and completeness of uniform
substitutions for the monotone modal logic dGL. The resulting axiomatization
admits a straightforward modular implementation of dGL in theorem provers
An Axiomatic Approach to Liveness for Differential Equations
This paper presents an approach for deductive liveness verification for
ordinary differential equations (ODEs) with differential dynamic logic.
Numerous subtleties complicate the generalization of well-known discrete
liveness verification techniques, such as loop variants, to the continuous
setting. For example, ODE solutions may blow up in finite time or their
progress towards the goal may converge to zero. Our approach handles these
subtleties by successively refining ODE liveness properties using ODE
invariance properties which have a well-understood deductive proof theory. This
approach is widely applicable: we survey several liveness arguments in the
literature and derive them all as special instances of our axiomatic refinement
approach. We also correct several soundness errors in the surveyed arguments,
which further highlights the subtlety of ODE liveness reasoning and the utility
of our deductive approach. The library of common refinement steps identified
through our approach enables both the sound development and justification of
new ODE liveness proof rules from our axioms.Comment: FM 2019: 23rd International Symposium on Formal Methods, Porto,
Portugal, October 9-11, 201
Dynamic airfoil stall investigations
Experimental and computational investigations of the dynamic stall phenomenon continue to attract the attention of various research groups in the major aeronautical research laboratories. There are two reasons for this continued research interest. First, the occurrence of dynamic stall on the retreating blade of helicopters imposes a severe performance limitation and thus suggests to search for ways to delay the onset of dynamic stall. Second, the lift enhancement prior to dynamic stall presents an opportunity to achieve enhanced maneuverability of fighter aircraft. A description of the major parameters affecting dynamic stall and lift and an evaluation of research efforts prior to 1988 has been given by Carr. In this paper the authors' recent progress in the development of experimental and computational methods to analyze the dynamic stall phenomena occurring on NACA 0112 airfoils is reviewed. First, the major experimental and computational approaches and results are summarized. This is followed by an assessment of our results and an outlook toward the future
Transparent yttrium hydride thin films prepared by reactive sputtering
Metal hydrides have earlier been suggested for utilization in solar cells.
With this as a motivation we have prepared thin films of yttrium hydride by
reactive magnetron sputter deposition. The resulting films are metallic for low
partial pressure of hydrogen during the deposition, and black or
yellow-transparent for higher partial pressure of hydrogen. Both metallic and
semiconducting transparent YHx films have been prepared directly in-situ
without the need of capping layers and post-deposition hydrogenation. Optically
the films are similar to what is found for YHx films prepared by other
techniques, but the crystal structure of the transparent films differ from the
well-known YH3 phase, as they have an fcc lattice instead of hcp
Speeding up Cylindrical Algebraic Decomposition by Gr\"obner Bases
Gr\"obner Bases and Cylindrical Algebraic Decomposition are generally thought
of as two, rather different, methods of looking at systems of equations and, in
the case of Cylindrical Algebraic Decomposition, inequalities. However, even
for a mixed system of equalities and inequalities, it is possible to apply
Gr\"obner bases to the (conjoined) equalities before invoking CAD. We see that
this is, quite often but not always, a beneficial preconditioning of the CAD
problem.
It is also possible to precondition the (conjoined) inequalities with respect
to the equalities, and this can also be useful in many cases.Comment: To appear in Proc. CICM 2012, LNCS 736
Towards Physical Hybrid Systems
Some hybrid systems models are unsafe for mathematically correct but
physically unrealistic reasons. For example, mathematical models can classify a
system as being unsafe on a set that is too small to have physical importance.
In particular, differences in measure zero sets in models of cyber-physical
systems (CPS) have significant mathematical impact on the mathematical safety
of these models even though differences on measure zero sets have no tangible
physical effect in a real system. We develop the concept of "physical hybrid
systems" (PHS) to help reunite mathematical models with physical reality. We
modify a hybrid systems logic (differential temporal dynamic logic) by adding a
first-class operator to elide distinctions on measure zero sets of time within
CPS models. This approach facilitates modeling since it admits the verification
of a wider class of models, including some physically realistic models that
would otherwise be classified as mathematically unsafe. We also develop a proof
calculus to help with the verification of PHS.Comment: CADE 201
Linear Fresnel Collector Receiver: Heat Loss and Temperatures
For design and component specification of a Linear Fresnel Collector (LFC) cavity receiver, the prediction of temperature distribution and heat loss is of great importance. In this paper we present a sensitivity analysis for a range of geometry and material parameters. For the LFC receiver analysis we use two models developed at Fraunhofer ISE. One is a detailed model, combining the spatial distribution of reflected radiation via ray tracing with detailed convective simulations through computational fluid dynamics. The second one is a fast algorithm based on a thermal resistance model. It is applying a similar methodology as the well-known model for vacuum absorber, enhancing an absorber tube model by parameters describing the influence of the secondary mirror and cover glass. The thermal resistance model is described in detail. Obtained results indicate a significant effect of the secondary mirror temperature on heat loss for specific geometries
Improving resilience to climate impacts in West Africa through improved availability, access and use of climate information: dialog with users
The stakeholder workshop on “Improving Resilience to Climate Impacts in West Africa
Through Improved Availability, Access and Use of Climate Information: Dialogue With
Users” was convened by the Centre Regional de Formation et d'Application en
Agrométéorologie et Hydrologie Opérationnelle (AGRHYMET) in collaboration with the
International Research Institute for Climate and Society (IRI) with funding and technical
support from the United States Agency for International Development (USAID), the CGIAR
Research Program on Climate Change, Agriculture and Food Security (CCAFS) and the
United Nations Development Program (UNDP). Stakeholders from six Permanent Inter-state
Committee for Drought Control in the Sahel (CILSS) countries were invited, in addition to
representatives of five river basin organizations and the African Center of Meteorological
Application for Development (ACMAD). The three-day meeting in Niamey, Niger (January
21-23, 2014) was attended by 40 participants and facilitators. It consisted of five components:
• Introduction to AGRHYMET’s latest climate data, tools, and information products;
• Training on the use of the tools for data analysis and visualization;
• Engagement on the concept of climate risk management in the different sectors;
• Soliciting feedback and needs from participants, to assess the value of the available tools
and products to users, and inform improvements that are most relevant to stakeholders;
and
• Exploration of an Advisory Group for improving Climate Services provided by the
AGRHYMET Center.
The workshop introduced and solicited feedback on data, products and decision-support tools
launched to support improved resilience to climate impacts, across sectors, initially targeting
the agriculture, water and disaster risk management communities
Extended Heat Loss and Temperature Analysis of Three Linear Fresnel Receiver Designs
Heat loss prediction models for parabolic trough receivers do not consider the thermal effect of a secondary mirror. As an extension a Thermal Resistance Model (TRM) has been developed at Fraunhofer ISE for the prediction of the heat loss of three different Linear Fresnel Collector (LFC) receiver configurations. In previous investigations we have found the energy balance of a LFC receiver to be strongly influenced by the amount of solar radiation absorbed by the secondary mirror. This absorption provokes an increase of temperature of the secondary mirror and hence a decrease in the total amount of heat loss of a LFC. The size of this effect depends on the receiver geometry and diverse ambient parameters. Investigated parameters are wind velocity, ambient temperature and Direct Normal Irradiance (DNI). This dependency and its effect on heat loss and secondary mirror temperatures are analyzed for three different LFC receiver configurations. As the radiation absorbed by the secondary mirror is affected by the aperture area of the LFC, studies are performed for small-scale and for large-scale collectors
Verifying the Safety of a Flight-Critical System
This paper describes our work on demonstrating verification technologies on a
flight-critical system of realistic functionality, size, and complexity. Our
work targeted a commercial aircraft control system named Transport Class Model
(TCM), and involved several stages: formalizing and disambiguating requirements
in collaboration with do- main experts; processing models for their use by
formal verification tools; applying compositional techniques at the
architectural and component level to scale verification. Performed in the
context of a major NASA milestone, this study of formal verification in
practice is one of the most challenging that our group has performed, and it
took several person months to complete it. This paper describes the methodology
that we followed and the lessons that we learned.Comment: 17 pages, 5 figure
- …