592 research outputs found

    Delivering Live Multimedia Streams to Mobile Hosts in a Wireless Internet with Multiple Content Aggregators

    Get PDF
    We consider the distribution of channels of live multimedia content (e.g., radio or TV broadcasts) via multiple content aggregators. In our work, an aggregator receives channels from content sources and redistributes them to a potentially large number of mobile hosts. Each aggregator can offer a channel in various configurations to cater for different wireless links, mobile hosts, and user preferences. As a result, a mobile host can generally choose from different configurations of the same channel offered by multiple alternative aggregators, which may be available through different interfaces (e.g., in a hotspot). A mobile host may need to handoff to another aggregator once it receives a channel. To prevent service disruption, a mobile host may for instance need to handoff to another aggregator when it leaves the subnets that make up its current aggregator�s service area (e.g., a hotspot or a cellular network).\ud In this paper, we present the design of a system that enables (multi-homed) mobile hosts to seamlessly handoff from one aggregator to another so that they can continue to receive a channel wherever they go. We concentrate on handoffs between aggregators as a result of a mobile host crossing a subnet boundary. As part of the system, we discuss a lightweight application-level protocol that enables mobile hosts to select the aggregator that provides the �best� configuration of a channel. The protocol comes into play when a mobile host begins to receive a channel and when it crosses a subnet boundary while receiving the channel. We show how our protocol can be implemented using the standard IETF session control and description protocols SIP and SDP. The implementation combines SIP and SDP�s offer-answer model in a novel way

    Uridine Metabolism in the Goldfish Retina During Optic Nerve Regeneration: Whole Retina Studies

    Full text link
    Accumulation of radioactivity from [ 3 H]uridine in incubations of whole goldfish retinas is increased in the ipsilateral retina during a period of regeneration that follows unilateral optic nerve crush. Brief incubations to investigate the nature of enhanced labeling of the acid-soluble fraction showed a peak uptake 4 days following crush, with a gradual decrease to control levels by 21 days following crush. That nucleoside uptake may not mediate the effect is supported by the observation that the rate of uptake of 5′-deoxyadenosine, a nonmetabolizable nucleoside analog, is the same in post-crush (PC) and normal (N) retinal incubations. Following brief incubations of PC and N retinas with [ 3 H]uridine, there is enhanced labeling in PC retinas relative to N retinas of recovered UMP, UDP, UTP, and uridine nucleotide sugars, whereas recovery of labeled uridine itself is slightly decreased. The results suggest that the increased accumulation of radioactivity in PC retinas following incubation with uridine reflects an increase in the activities of retinal uridine kinase and uridine nucleotide kinases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65630/1/j.1471-4159.1981.tb01713.x.pd

    Thermal Density Functional Theory in Context

    Full text link
    This chapter introduces thermal density functional theory, starting from the ground-state theory and assuming a background in quantum mechanics and statistical mechanics. We review the foundations of density functional theory (DFT) by illustrating some of its key reformulations. The basics of DFT for thermal ensembles are explained in this context, as are tools useful for analysis and development of approximations. We close by discussing some key ideas relating thermal DFT and the ground state. This review emphasizes thermal DFT's strengths as a consistent and general framework.Comment: Submitted to Spring Verlag as chapter in "Computational Challenges in Warm Dense Matter", F. Graziani et al. ed

    OmniDepth: Dense Depth Estimation for Indoors Spherical Panoramas.

    Get PDF
    Recent work on depth estimation up to now has only focused on projective images ignoring 360o content which is now increasingly and more easily produced. We show that monocular depth estimation models trained on traditional images produce sub-optimal results on omnidirectional images, showcasing the need for training directly on 360o datasets, which however, are hard to acquire. In this work, we circumvent the challenges associated with acquiring high quality 360o datasets with ground truth depth annotations, by re-using recently released large scale 3D datasets and re-purposing them to 360o via rendering. This dataset, which is considerably larger than similar projective datasets, is publicly offered to the community to enable future research in this direction. We use this dataset to learn in an end-to-end fashion the task of depth estimation from 360o images. We show promising results in our synthesized data as well as in unseen realistic images

    Novel Indirect Calorimetry Technology to Analyze Metabolism in Individual Neonatal Rodent Pups

    Get PDF
    BACKGROUND: The ability to characterize the development of metabolic function in neonatal rodents has been limited due to technological constraints. Low respiratory volumes and flows at rest pose unique problems, making it difficult to reliably measure O(2) consumption, CO(2) production, respiratory quotient (RQ), and energy expenditure (EE). Our aim was to develop and validate a commercial-grade indirect calorimetry system capable of characterizing the metabolic phenotype of individual neonatal rodents. METHODOLOGY/PRINCIPAL FINDINGS: To address this research need, we developed a novel, highly sensitive open-circuit indirect calorimetry system capable of analyzing respiratory gas exchange in a single neonatal rodent pup. Additionally, we derived an equation from known metabolic relationships to estimate inlet flow rates, improving the efficiency of data collection. To validate the neonatal rodent indirect calorimetry system and evaluate the applicability of the derived equation for predicting appropriate flow rates, we conducted a series of experiments evaluating the impact of sex, litter size, time of day (during the light phase), and ambient temperature on neonatal rat metabolic parameters. Data revealed that the only metabolic parameter influenced by litter size is a neonatal rat's RQ, with rat pups reared in a small litter (5 pups) having lower RQ's than rat pups reared in either medium (8 pups) or large (11 pups) litters. Furthermore, data showed that ambient temperature affected all metabolic parameters measured, with colder temperatures being associated with higher CO(2) production, higher O(2) consumption, and higher energy expenditure. CONCLUSION/SIGNIFICANCE: The results of this study demonstrate that the modified Panlab Oxylet system reliably assesses early postnatal metabolism in individual neonatal rodents. This system will be of paramount importance to further our understanding of processes associated with the developmental origins of adult metabolic disease

    Epigenetics and obesity: the devil is in the details

    Get PDF
    Obesity is a complex disease with multiple well-defined risk factors. Nevertheless, susceptibility to obesity and its sequelae within obesogenic environments varies greatly from one person to the next, suggesting a role for gene × environment interactions in the etiology of the disorder. Epigenetic regulation of the human genome provides a putative mechanism by which specific environmental exposures convey risk for obesity and other human diseases and is one possible mechanism that underlies the gene × environment/treatment interactions observed in epidemiological studies and clinical trials. A study published in BMC Medicine this month by Wang et al. reports on an examination of DNA methylation in peripheral blood leukocytes of lean and obese adolescents, comparing methylation patterns between the two groups. The authors identified two genes that were differentially methylated, both of which have roles in immune function. Here we overview the findings from this study in the context of those emerging from other recent genetic and epigenetic studies, discuss the strengths and weaknesses of the study and speculate on the future of epigenetics in chronic disease research
    corecore