297 research outputs found

    Hybridizing Cartesian Genetic Programming and Harmony Search for Adaptive Feature Construction in Supervised Learning Problems

    Get PDF
    The advent of the so-called Big Data paradigm has motivated a flurry of research aimed at enhancing machine learning models by following very di- verse approaches. In this context this work focuses on the automatic con- struction of features in supervised learning problems, which differs from the conventional selection of features in that new characteristics with enhanced predictive power are inferred from the original dataset. In particular this manuscript proposes a new iterative feature construction approach based on a self-learning meta-heuristic algorithm (Harmony Search) and a solution encoding strategy (correspondingly, Cartesian Genetic Programming) suited to represent combinations of features by means of constant-length solution vectors. The proposed feature construction algorithm, coined as Adaptive Cartesian Harmony Search (ACHS), incorporates modifications that allow exploiting the estimated predictive importance of intermediate solutions and, ultimately, attaining better convergence rate in its iterative learning proce- dure. The performance of the proposed ACHS scheme is assessed and com- pared to that rendered by the state of the art in a toy example and three practical use cases from the literature. The excellent performance figures obtained in these problems shed light on the widespread applicability of the proposed scheme to supervised learning with legacy datasets composed by already refined characteristics

    Pest suppression by ant biodiversity is modified by pest biodiversity

    Get PDF
    Summary 1. Agroecosystems are often complex ecosystems with diverse food webs. Changes in food web complexity may have important context-dependent consequences for pest control strategies. 2. The success of predator introductions to suppress pests may depend on the diversity of pests. For crops with diverse pest assemblages, it is hypothesized that diverse predator communities are needed to suppress diverse pest assemblages below damaging levels. 3. In this study, we compare the ability of ant predator monocultures and polycultures to suppress single-and diverse-(three species) pest assemblages in a coffee foodweb. We use a factorial experiment that compared treatments of predator and pest diversity to understand the impact of pest diversity on multiple predator effects. 4. We show that predator polycultures enhanced pest risk relative to predator monocultures significantly more in the diverse-pest treatment relative to in the single-pest treatments for two of three pest species. Further, we show that pest diversity significantly reduced pest risk in all predator treatments except for the predator polyculture treatment. 5. These results suggest that pest diversity may reduce the efficiency of single predator species at suppressing pest damage, but do not limit multiple predator species. This in turn leads to stronger effects of predator diversity with greater pest diversity. These results highlight the need to consider foodweb complexity, such as pest diversity, when designing and implementing biology control programs

    Foraging behavior as a determinant of asymmetric competitive interaction between two ant species in a tropical agroecosystem

    Full text link
    This work is concerned with elucidating competitive interactions between two neotropical ants, Solenopsis geminata and Pheidole radoszkowskii , focusing on their foraging behavior. When released from competition from P. radoszkowskii, S. geminata increased its foraging activity. On the other hand, when released from competition from S. geminata, P. radoszkowskii did not respond, demonstrating asymmetric competition between the two species. Foraging experiments showed that P. radoszkowskii is more efficient at finding food resources, whereas S. geminata is better at defending the resources once they are encountered. These differences in foraging behavior appear to permit the coexistence of these two species. The practical implications of the results for the management of ant communities in tropical agroecosystems is discussed with respect to the potential use of ants as natural enemies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47804/1/442_2004_Article_BF00341471.pd

    Ensemble Composition and Activity Levels of Insectivorous Bats in Response to Management Intensification in Coffee Agroforestry Systems

    Get PDF
    Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats – nearly half the Neotropical bat species – change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures

    Modernización de equipo feedback MS-150 para el aprendizaje activo en ingeniería de control

    Get PDF
    [Resumen] En este artículo se presenta el desarrollo e integración de elementos hardware para construir un sistema de adquisición de datos que permite modernizar el equipo didáctico Feedback MS-150 con el fin de ampliar su tiempo de vida y aumentar el alcance de los conceptos de control que se pueden explicar con él. El sistema de adquisición no supera los 100 €

    Ensemble Composition and Activity Levels of Insectivorous Bats in Response to Management Intensification in Coffee Agroforestry Systems

    Get PDF
    Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats – nearly half the Neotropical bat species – change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures

    Ants defend coffee from berry borer colonization

    Full text link
    Ants frequently prevent herbivores from damaging plants. In agroecosystems they may provide pest control services, although their contributions are not always appreciated. Here we compared the ability of eight ant species to prevent the coffee berry borer from colonizing coffee berries with a field exclusion experiment. We removed ants from one branch (exclusion) and left ants to forage on a second branch (control) before releasing 20 berry borers on each branch. After 24 h, six of eight species had significantly reduced the number of berries bored by the berry borer compared to exclusion treatment branches. While the number of berries per branch was a significant covariate explaining the number of berries bored, ant activity (that varied greatly among species) was not a significant factor in models. This study is the first field experiment to provide evidence that a diverse group of ant species limit the berry borer from colonizing coffee berries. © 2013 International Organization for Biological Control (IOBC)
    corecore