46 research outputs found

    Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response

    Get PDF
    Objective: Cyclooxygenase (COX)-2 is a key regulatory enzyme in the synthesis of prostanoids associated with trauma and inflammation. We investigated the COX-2 gene for functional variants that may influence susceptibility to disease. Methods and results: The promoter of COX-2 was screened for variants in healthy subjects by use of polymerase chain reaction-based methods. Promoter activity was investigated by using reporter expression experiments in human lung fibroblasts. Patients undergoing coronary artery bypass graft surgery, with measurements of plasma markers linked to COX-2 activity, were genotyped for association studies. A common COX-2 promoter variant, -765G>C, was found and shown to be carried by >25% of a group of healthy UK subjects. The -765C allele had significantly lower promoter activity compared with -765G, basally (28±3% lower, P<0.005) and in serum-stimulated cells (31±2% lower, P<0.005). In patients subjected to coronary artery bypass graft surgery, the magnitude of rise in levels of C-reactive protein (CRP) was strongly genotype dependent. Compared with -765G homozygotes, patients carrying the -765C allele had significantly lower plasma CRP levels at 1 to 4 days after surgery (14% lower at the peak of CRP levels on day 3, P<0.05 for all time points). Conclusions: For several acute and chronic inflammatory diseases, -765G>C may influence the variability of response observed

    Relationship between cyclooxygenase 8473T>C polymorphism and the risk of lung cancer: a case-control study

    Get PDF
    BACKGROUND: Cyclooxygenase-2 (COX-2) plays an important role in the development of lung cancer. DNA sequence variations in the COX-2 gene may lead to altered COX-2 production and/or activity, and so they cause inter-individual differences in the susceptibility to lung cancer. To test this hypothesis, we investigated the association between the 8473T>C polymorphism in the 3'-untranslated region of the COX-2 gene and the risk of lung cancer in a Korean population. METHODS: The COX-2 genotypes were determined using PCR-based primer-introduced restriction analysis in 582 lung cancer patients and in 582 healthy controls that were frequency-matched for age and gender. RESULTS: The distribution of the COX-2 8473T>C genotypes was not significantly different between the overall lung cancer cases and the controls. However, when the cases were categorized by the tumor histology, the combined 8473 TC + CC genotype was associated with a significantly decreased risk of adenocarcinoma as compared with the 8473 TT genotype (adjusted OR = 0.64; 95% CI = 0.46–0.90, P = 0.01). On the stratification analysis, the protective effect of the combined 8473 TC + CC genotype against adenocarcinoma was statistically significant in the males, older individuals and ever-smokers (adjusted OR = 0.59; 95% CI = 0.39–0.91, P = 0.02; adjusted OR = 0.55; 95% CI = 0.33–0.93, P = 0.03; and adjusted OR = 0.57; 95% CI = 0.37–0.87, P = 0.01, respectively). CONCLUSION: These findings suggest that the COX-2 8473T>C polymorphism could be used as a marker for the genetic susceptibility to adenocarcinoma of the lung

    The Functional −765G→C Polymorphism of the COX-2 Gene May Reduce the Risk of Developing Crohn's Disease

    Get PDF
    Contains fulltext : 87827.pdf (publisher's version ) (Open Access)BACKGROUND: Cyclooxygenase-2 (COX-2) is a key enzyme involved in the conversion of arachidonic acid into prostaglandins. COX-2 is mainly induced at sites of inflammation in response to proinflammatory cytokines such as interleukin-1alpha/beta, interferon-gamma and tumor necrosis factor-alpha produced by inflammatory cells. AIM: The aim of this study was to investigate the possible modulating effect of the functional COX-2 polymorphisms -1195 A-->G and -765G-->C on the risk for development of inflammatory bowel disease (IBD) in a Dutch population. METHODS: Genomic DNA of 525 patients with Crohn's disease (CD), 211 patients with ulcerative colitis (UC) and 973 healthy controls was genotyped for the -1195 A-->G (rs689466) and -765G-->C (rs20417) polymorphisms. Distribution of genotypes in patients and controls were compared and genotype-phenotype interactions were investigated. RESULTS: The genotype distribution of the -1195A-->G polymorphism was not different between the patients with CD or UC and the control group. The -765GG genotype was more prevalent in CD patients compared to controls with an OR of 1.33 (95%CI 1.04-1.69, pC polymorphism was associated with a reduced risk for developing Crohn's disease in a Dutch population

    Gallbladder Cancer Predisposition: A Multigenic Approach to DNA-Repair, Apoptotic and Inflammatory Pathway Genes

    Get PDF
    Gallbladder cancer (GBC) is a multifactorial disease with complex interplay between multiple genetic variants. We performed Classification and Regression Tree Analysis (CART) and Grade of Membership (GoM) analysis to identify combinations of alleles among the DNA repair, inflammatory and apoptotic pathway genetic variants in modifying the risk for GBC. We analyzed 16 polymorphisms in 8 genes involved in DNA repair, apoptotic and inflammatory pathways to find out combinations of genetic variants contributing to GBC risk. The genes included in the study were XRCC1, OGG1, ERCC2, MSH2, CASP8, TLR2, TLR4 and PTGS2. Single locus analysis by logistic regression showed association of MSH2 IVS1+9G>C (rs2303426), ERCC2 Asp312Asn (rs1799793), OGG1 Ser326Cys (rs1052133), OGG1 IVS4-15C>G (rs2072668), CASP8 -652 6N ins/del (rs3834129), PTGS2 -1195G>A (rs689466), PTGS2 -765G>C (rs20417), TLR4 Ex4+936C>T (rs4986791) and TLR2 –196 to –174del polymorphisms with GBC risk. The CART analysis revealed OGG1 Ser326Cys, and OGG1 IVS4-15C>G polymorphisms as the best polymorphic signature for discriminating between cases and controls. In the GoM analysis, the data was categorized into six sets representing risk for GBC with respect to the investigated polymorphisms. Sets I, II and III described low intrinsic risk (controls) characterized by multiple protective alleles while sets IV, V and VI represented high intrinsic risk groups (GBC cases) characterized by the presence of multiple risk alleles. The CART and GoM analyses also showed the importance of PTGS2 -1195G>A polymorphism in susceptibility to GBC risk. In conclusion, the present multigenic approach can be used to define individual risk profiles for gallbladder cancer in North Indian population

    Allellic variants in regulatory regions of cyclooxygenase-2: association with advanced colorectal adenoma

    Get PDF
    Cyclooxygenase 2 (Cox-2) is upregulated in colorectal adenomas and carcinomas. Polymorphisms in the Cox-2 gene may influence its function and/or its expression and may modify the protective effect of nonsteroidal anti-inflammatory drugs (NSAIDs), thereby impacting individuals' risk of developing colorectal cancer and response to prevention/intervention strategies. In a nested case–control study, four polymorphisms in the Cox-2 gene (two in the promoter, −663 insertion/deletion, GT/(GT) and −798 A/G; one in intron 5-5229, T/G; one in 3′untranslated region (UTR)-8494, T/C) were genotyped in 726 cases of colorectal adenomas and 729 age- and gender-matched controls in the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial. There was no significant association between the Cox-2 polymorphisms and adenoma development in the overall population. However, in males, the relatively rare heterozygous genotype GT/(GT) at −663 in the promoter and the variant homozygous genotype G/G at intron 5-5229 appeared to have inverse associations (odds ratio (OR)=0.59, confidence interval (CI): 0.34–1.02 and OR=0.48, CI: 0.24–0.99, respectively), whereas the heterozygous genotype T/C at 3′UTR-8494 had a positive association (OR=1.31, CI: 1.01–1.71) with adenoma development. Furthermore, the haplotype carrying the risk-conferring 3′UTR-8494 variant was associated with a 35% increase in the odds for adenoma incidence in males (OR=1.35, CI: 1.07–1.70), but the one with a risk allele at 3′UTR-8494 and a protective allele at intron 5-5229 had no effect on adenoma development (OR=0.85, CI: 0.66–1.09). Gender-related differences in adenoma risk were also noted with tobacco usage and protective effects of NSAIDs. Our analysis underscores the significance of the overall allelic architecture of Cox-2 as an important determinant for risk assessment

    Polymorphisms in regulatory regions of Cyclooxygenase-2 gene and breast cancer risk in Brazilians: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyclooxygenase-2 (COX-2) is up-regulated in several types of cancer, and it is hypothesized that COX-2 expression may be genetically influenced. Here, we evaluate the association between single-nucleotide polymorphisms (SNPs) in the COX-2 gene (<it>PTGS2</it>) and the occurrence of breast cancer among Brazilian women.</p> <p>Methods</p> <p>The study was conducted prospectively in two steps: First, we screened the promoter region and three fragments of the 3'-untranslated region of <it>PTGS2 </it>from 67 healthy Brazilians to identify SNPs and to select those with a minor allele frequency (MAF) of at least 0.10. The MAF of these selected SNPs was further characterized in 402 healthy volunteers to evaluate potential differences related to heterogeneous racial admixture and to estimate the existence of linkage disequilibrium among the SNPs. The second step was a case-control study with 318 patients and 273 controls designed to evaluate <it>PTGS2 </it>genotype- or haplotype-associated risk of breast cancer.</p> <p>Results</p> <p>The screening analysis indicated nine SNPs with the following MAFs: rs689465 (0.22), rs689466 (0.15), rs20415 (0.007), rs20417 (0.32), rs20419 (0.015), rs5270 (0.02), rs20424 (0.007), rs5275 (0.22) and rs4648298 (0.01). The SNPs rs689465, rs689466, rs20417 and rs5275 were further studied: Their genotypic distributions followed Hardy-Weinberg equilibrium and the MAFs were not affected by gender or skin color. Strong linkage disequilibrium was detected for rs689465, rs20417 and rs5275 in the three possible pairwise combinations. In the case-control study, there was a significant increase of rs5275TC heterozygotes in cases compared to controls (OR = 1.44, 95% CI = 1.01-2.06; P = 0.043), and the haplotype formed by rs689465G, rs689466A, rs20417G and rs5275C was only detected in cases. The apparent association with breast cancer was not confirmed for rs5275CC homozygotes or for the most frequent rs5275C-containing haplotypes.</p> <p>Conclusions</p> <p>Our results indicate no strong association between the four most frequent <it>PTGS2 </it>SNPs and the risk of breast cancer.</p

    Genetic polymorphisms in the cyclooxygenase-2 gene, use of nonsteroidal anti-inflammatory drugs, and breast cancer risk

    Get PDF
    INTRODUCTION: The association between use of nonsteroidal anti-inflammatory drugs (NSAIDs) and breast cancer risk remains unclear. Inconsistencies in previously reported findings may be partly due to differences in expression of cyclooxygenase (COX)-2. We hypothesized that genetic polymorphisms (COX-2 .926, COX-2 .5209, and COX-2 .8473) may reduce overall breast cancer risk or risk for subtypes of breast cancer by modulating the inflammatory response and may interact with aspirin or any NSAID use. METHODS: We conducted a population-based, case-control study in which we genotyped 1,067 breast cancer cases and 1,110 control individuals included in the Long Island Breast Cancer Study Project. RESULTS: No major effects of the three COX-2 variant alleles on breast cancer risk were found. A total of eight distinct haplotypes and 18 diplotypes were observed in the population. Overall, no significant associations between COX-2 haplotypes/diplotypes and breast cancer risk were observed. Among women who used aspirin or any NSAID there was little evidence for an interaction with the at-risk COX-2 genotypes, with one exception. Among women with hormone receptor positive breast cancer, the reduced risk for any NSAID use was only evident among those who had at least one variant C allele of COX-2 .8473 (odds ratio = 0.7, 95% confidence interval = 0.5 to 1.0; P for the interaction = 0.02). There was no corresponding interaction for aspirin use, possibly because of limited power. CONCLUSION: These data provide modest evidence that the C allele of COX-2 .8473 may interact with NSAIDs to reduce risk for hormone receptor positive breast cancer
    corecore