
NFVRG C. Meirosu
Internet Draft Ericsson
Intended status: Informational A. Manzalini
Expires: January 2016 Telecom Italia
 J. Kim
 Deutsche Telekom
 R. Steinert
 SICS
 S. Sharma
 iMinds
 G. Marchetto
 Politecnico di Torino
 I. Papafili
 Hellenic Telecommunications Organization
 K. Pentikousis
 EICT
 S. Wright
 AT&T

 July 6, 2015

 DevOps for Software-Defined Telecom Infrastructures
 draft-unify-nfvrg-devops-02.txt

Abstract

 Carrier-grade network management was optimized for environments built
 with monolithic physical nodes and involves significant deployment,
 integration and maintenance efforts from network service providers.
 The introduction of virtualization technologies, from the physical
 layer all the way up to the application layer, however, invalidates
 several well-established assumptions in this domain. This draft opens
 the discussion in NFVRG about challenges related to transforming the
 telecom network infrastructure into an agile, model-driven production
 environment for communication services. We take inspiration from data
 center DevOps regarding how to simplify and automate management
 processes for a telecom service provider software-defined
 infrastructure (SDI). Finally, we introduce challenges associated
 with operationalizing DevOps principles at scale in software-defined
 telecom networks in three areas related to key monitoring,
 verification and troubleshooting processes.

Meirosu, et al. Expires January 6, 2016 [Page 1]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55715703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Internet-Draft DevOps Challenges July 2015

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

 This Internet-Draft will expire on January 6, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4 .e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction... 3
 2. Software-Defined Telecom Infrastructure: Roles and DevOps
 principles.. 5
 2.1 . Service Developer Role.................................... 5

Meirosu, et al. Expires January 6, 2016 [Page 2]

https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft DevOps Challenges July 2015

 2.2 . VNF Developer role.. 5
 2.3 . Operator role... 6
 2.4 . DevOps Principles... 6
 3. Continuous Integration... 7
 4. Continuous Delivery.. 8
 5. Stability Challenges... 8
 6. Consistency, Availability and Partitioning Challenges......... 10
 7. Observability Challenges...................................... 11
 8. Verification Challenges....................................... 11
 9. Troubleshooting Challenges.................................... 13
 10. Programmable network management.............................. 14
 11. DevOps Performance Metrics................................... 15
 12. Security Considerations...................................... 16
 13. IANA Considerations.. 16
 14. Informative References....................................... 16
 15. Acknowledgments.. 18

1. Introduction

 Carrier-grade network management was developed as an incremental
 solution once a particular network technology matured and came to be
 deployed in parallel with legacy technologies. This approach requires
 significant integration efforts when new network services are
 launched. Both centralized and distributed algorithms have been
 developed in order to solve very specific problems related to
 configuration, performance and fault management. However, such
 algorithms consider a network that is by and large functionally
 static. Thus, management processes related to introducing new or
 maintaining functionality are complex and costly due to significant
 efforts required for verification and integration.

 Network virtualization, by means of Software-Defined Networking (SDN)
 and Network Function Virtualization (NFV), creates an environment
 where network functions are no longer static nor stricltly embedded
 in physical boxes deployed at fixed points. The virtualized network
 is dynamic and open to fast-paced innovation enabling efficient
 network management and reduction of operating cost for network
 operators. A significant part of network capabilities are expected to
 become available through interfaces that resemble the APIs widespread
 within datacenters instead of the traditional telecom means of
 management such as the Simple Network Management Protocol, Command
 Line Interfaces or CORBA. Such an API-based approach, combined with
 the programmability offered by SDN interfaces [RFC7426], open
 opportunities for handling infrastructure, resources, and Virtual
 Network Functions (VNFs) as code, employing techniques from software
 engineering.

Meirosu, et al. Expires January 6, 2016 [Page 3]

https://tools.ietf.org/pdf/rfc7426

Internet-Draft DevOps Challenges July 2015

 The efficiency and integration of existing management techniques in
 virtualized and dynamic network environments are limited, however.
 Monitoring tools, e.g. based on simple counters, physical network
 taps and active probing, do not scale well and provide only a small
 part of the observability features required in such a dynamic
 environment. Although huge amounts of monitoring data can be
 collected from the nodes, the typical granularity is rather coarse.
 Debugging and troubleshooting techniques developed for software-
 defined environments are a research topic that has gathered interest
 in the research community in the last years. Still, it is yet to be
 explored how to integrate them into an operational network management
 system. Moreover, research tools developed in academia (such as
 NetSight [H2014], OFRewind [W2011], FlowChecker [S2010], etc.) were
 limited to solving very particular, well-defined problems, and
 oftentimes are not built for automation and integration into carrier-
 grade network operations workflows.

 The topics at hand have already attracted several standardization
 organizations to look into the issues arising in this new
 environment. For example, IETF working groups have activities in the
 area of OAM and Verification for Service Function Chaining
 [I-D.aldrin-sfc-oam-framework] [I-D.lee-sfc-verification] for Service
 Function Chaining. At IRTF, [RFC7149] asks a set of relevant
 questions regarding operations of SDNs. The ETSI NFV ISG defines the
 MANO interfaces [NFVMANO], and TMForum investigates gaps between
 these interfaces and existing specifications in [TR228]. The need for
 programmatic APIs in the orchestration of compute, network and
 storage resources is discussed in [I-
 D.unify-nfvrg-challenges].

 From a research perspective, problems related to operations of
 software-defined networks are in part outlined in [SDNsurvey] and
 research referring to both cloud and software-defined networks are
 discussed in [D4.1].

 The purpose of this first version of this document is to act as a
 discussion opener in NFVRG by describing a set of principles that are
 relevant for applying DevOps ideas to managing software-defined
 telecom network infrastructures. We identify a set of challenges
 related to developing tools, interfaces and protocols that would
 support these principles and how can we leverage standard APIs for
 simplifying management tasks.

Meirosu, et al. Expires January 6, 2016 [Page 4]

https://tools.ietf.org/pdf/rfc7149

Internet-Draft DevOps Challenges July 2015

2. Software-Defined Telecom Infrastructure: Roles and DevOps principles

 Agile methods used in many software focused companies are focused on
 releasing small interactions of code tom implement VNFs with high
 velocity and high quality into a production environment. Similarly
 Service providers are interested to release incremental improvements
 in the network services that they create from virtualized network
 functions. The cycle time for DevOps as applied in many open source
 projects is on the order of one quarter year or 13 weeks.

 The code needs to undergo a significant amount of automated testing
 and verification with pre-defined templates in a realistic setting.
 From the point of view of infrastructure management, the verification
 of the network configuration as result of network policy
 decomposition and refinement, as well as the configuration of virtual
 functions, is one of the most sensitive operations. When
 troubleshooting the cause of unexpected behavior, fine-grained
 visibility onto all resources supporting the virtual functions
 (either compute, or network-related) is paramount to facilitating
 fast resolution times. While compute resources are typically very
 well covered by debugging and profiling toolsets based on many years
 of advances in software engineering, programmable network resources
 are a still a novelty and tools exploiting their potential are
 scarce.

2.1 . Service Developer Role

 We identify two dimensions of the "developer" role in software-
 defined infrastructure (SDI). One dimension relates to determining
 which high-level functions should be part of a particular service,
 deciding what logical interconnections are needed between these
 blocks and defining a set of high-level constraints or goals related
 to parameters that define, for instance, a Service Function Chain.
 This could be determined by the product owner for a particular family
 of services offered by a telecom provider. Or, it might be a key
 account representative that adapts an existing service template to
 the requirements of a particular customer by adding or removing a
 small number of functional entities. We refer to this person as the
 Service Developer and for simplicity (access control, training on
 technical background, etc.) we consider the role to be internal to
 the telecom provider.

2.2 . VNF Developer role

 The other dimension of the "developer" role is a person that writes
 the software code for a new virtual network function (VNF). Depending

Meirosu, et al. Expires January 6, 2016 [Page 5]

Internet-Draft DevOps Challenges July 2015

 on the actual VNF being developed, this person might be internal or
 external to the telecom provider. We refer to them as VNF Developers.

2.3 . Operator role

 The role of an Operator in SDI is to ensure that the deployment
 processes were successful and a set of performance indicators
 associated to a service are met while the service is supported on
 virtual infrastructure within the domain of a telecom provider.

 System integration roles are important and we intend to approach them
 in a future reversion of this draft.

2.4 . DevOps Principles

 In line with the generic DevOps concept outlined in [DevOpsP], we
 consider that these four principles as important for adapting DevOps
 ideas to SDI:

 * Deploy with repeatable, reliable processes: Service and VNF
 Developers should be supported by automated build, orchestrate and
 deploy processes that are identical in the development, test and
 production environments. Such processes need to be made reliable and
 trusted in the sense that they should reduce the chance of human
 error and provide visibility at each stage of the process, as well as
 have the possibility to enable manual interactions in certain key
 stages.

 * Develop and test against production-like systems: both Service
 Developers and VNF Developers need to have the opportunity to verify
 and debug their respective SDI code in systems that have
 characteristics which are very close to the production environment
 where the code is expected to be ultimately deployed. Customizations
 of Service Function Chains or VNFs could thus be released frequently
 to a production environment in compliance with policies set by the
 Operators. Adequate isolation and protection of the services active
 in the infrastructure from services being tested or debugged should
 be provided by the production environment.

 * Monitor and validate operational quality: Service Developers, VNF
 Developers and Operators must be equipped with tools, automated as
 much as possible, that enable to continuously monitor the operational
 quality of the services deployed on SDI. Monitoring tools should be
 complemented by tools that allow verifying and validating the
 operational quality of the service in line with established
 procedures which might be standardized (for example, Y.1564 Ethernet

Meirosu, et al. Expires January 6, 2016 [Page 6]

Internet-Draft DevOps Challenges July 2015

 Activation [Y1564]) or defined through best practices specific to a
 particular telecom operator.

 * Amplify development cycle feedback loops: An integral part of the
 DevOps ethos is building a cross-cultural environment that bridges
 the cultural gap between the desire for continuous change by the
 Developers and the demand by the Operators for stability and
 reliability of the infrastructure. Feedback from customers is
 collected and transmitted throughout the organization. From a
 technical perspective, such cultural aspects could be addressed
 through common sets of tools and APIs that are aimed at providing a
 shared vocabulary for both Developers and Operators, as well as
 simplifying the reproduction of problematic situations in the
 development, test and operations environments.

 Network operators that would like to move to agile methods to deploy
 and manage their networks and services face a different environment
 compared to typical software companies where simplified trust
 relationships between personnel are the norm. In such companies, it
 is not uncommon that the same person may be rotating between
 different roles. In contrast, in a telecom service provider, there
 are strong organizational boundaries between suppliers (whether in
 Developer roles for network functions, or in Operator roles for
 outsourced services) and the carrier’s own personnel that might also
 take both Developer and Operator roles. How DevOps principles reflect
 on these trust relationships and to what extent initiatives such as
 co-creation could transform the environment to facilitate closer Dev
 and Ops integration across business boundaries is an interesting area
 for business studies, but we could not for now identify a specific
 technological challenge.

3. Continuous Integration

 Software integration is the process of bringing together the software
 component subsystems into one software system, and ensuring that the
 subsystems function together as a system. Software integration can
 apply regardless of the size of the software components. The
 objective of Continuous Integration is to prevent integration
 problems close to the expected release of a software development
 project into a production (operations) environment. Continuous
 Integration is therefore closely coupled with the notion of DevOps as
 a mechanism to ease the transition from development to operations.

 Continuous integration may result in multiple builds per day. It is
 also typically used in conjunction with test driven development

Meirosu, et al. Expires January 6, 2016 [Page 7]

Internet-Draft DevOps Challenges July 2015

 approaches that integrate unit testing into the build process. The
 unit testing is typically automated through build servers. Such
 servers may implement a variety of additional static and dynamic
 tests as well as other quality control and documentation extraction
 functions. The reduced cycle times of continuous enable improved
 software quality by applying small efforts frequently.

 Continuous Integration applies to developers of VNF as they integrate
 the components that they need to deliver their VNF. The VNFs may
 contain components developed by different teams within the VNF
 Provider, or may integrate code developed externally - e.g. in
 commercial code libraries or in open source communities.

 Service providers also apply continuous integration in the
 development of network services. Network services are comprised of
 various aspects including VNFs and connectivity within and between
 them as well as with various associated resource authorizations. The
 components of the networks service are all dynamic, and largely
 represented by software that must be integrated regularly to maintain
 consistency. Some of the software components that Service Providers
 may be sourced from VNF Providers or from open source communities.
 Service Providers are increasingly motivated to engage with open
 Source communities [OSandS]. Open source interfaces supported by open
 source communities may be more useful than traditional paper
 interface specifications. Even where Service Providers are deeply
 engaged in the open source community (e.g. OPNFV) many service
 providers may prefer to obtain the code through some software
 provider as a business practice. Such software providers have the
 same interests in software integration as other VNF providers.

4. Continuous Delivery

 The practice of Continuous Delivery extends Continuous Integration by
 ensuring that the software checked in on the mainline is always in a
 user deployable state and enables rapid deployment by those users.

5. Stability Challenges

 The dimensions, dynamicity and heterogeneity of networks are growing
 continuously. Monitoring and managing the network behavior in order
 to meet technical and business objectives is becoming increasingly
 complicated and challenging, especially when considering the need of
 predicting and taming potential instabilities.

Meirosu, et al. Expires January 6, 2016 [Page 8]

Internet-Draft DevOps Challenges July 2015

 In general, instability in networks may have primary effects both
 jeopardizing the performance and compromising an optimized use of
 resources, even across multiple layers: in fact, instability of end-
 to-end communication paths may depend both on the underlying
 transport network, as well as the higher level components specific to
 flow control and dynamic routing. For example, arguments for
 introducing advanced flow admission control are essentially derived
 from the observation that the network otherwise behaves in an
 inefficient and potentially unstable manner. Even with resources over
 provisioning, a network without an efficient flow admission control
 has instability regions that can even lead to congestion collapse in
 certain configurations. Another example is the instability which is
 characteristic of any dynamically adaptive routing system. Routing
 instability, which can be (informally) defined as the quick change of
 network reachability and topology information, has a number of
 possible origins, including problems with connections, router
 failures, high levels of congestion, software configuration errors,
 transient physical and data link problems, and software bugs.

 As a matter of fact, the states monitored and used to implement the
 different control and management functions in network nodes are
 governed by several low-level configuration commands (today still
 done mostly manually). Further, there are several dependencies among
 these states and the logic updating the states (most of which are not
 kept aligned automatically). Normally, high-level network goals (such
 as the connectivity matrix, load-balancing, traffic engineering
 goals, survivability requirements, etc) are translated into low-level
 configuration commands (mostly manually) individually executed on the
 network elements (e.g., forwarding table, packet filters, link-
 scheduling weights, and queue-management parameters, as well as
 tunnels and NAT mappings). Network instabilities due to configuration
 errors can spread from node to node and propagate throughout the
 network.

 DevOps in the data center is a source of inspiration regarding how to
 simplify and automate management processes for software-defined
 infrastructure.

 As a specific example, automated configuration functions are expected
 to take the form of a "control loop" that monitors (i.e., measures)
 current states of the network, performs a computation, and then
 reconfigures the network. These types of functions must work
 correctly even in the presence of failures, variable delays in
 communicating with a distributed set of devices, and frequent changes
 in network conditions. Nevertheless cascading and nesting of
 automated configuration processes can lead to the emergence of non-
 linear network behaviors, and as such sudden instabilities (i.e.

Meirosu, et al. Expires January 6, 2016 [Page 9]

Internet-Draft DevOps Challenges July 2015

 identical local dynamic can give rise to widely different global
 dynamics).

6. Consistency, Availability and Partitioning Challenges

 The CAP theorem [CAP] states that any networked shared-data system
 can have at most two of following three properties: 1) Consistency
 (C) equivalent to having a single up-to-date copy of the data; 2)
 high Availability (A) of that data (for updates); and 3) tolerance to
 network Partitions (P).

 Looking at a telecom SDI as a distributed computational system
 (routing/forwarding packets can be seen as a computational problem),
 just two of the three CAP properties will be possible at the same
 time. The general idea is that 2 of the 3 have to be chosen. CP favor
 consistency, AP favor availability, CA there are no partition. This
 has profound implications for technologies that need to be developed
 in line with the "deploy with repeatable, reliable processes"
 principle for configuring SDI states. Latency or delay and
 partitioning properties are closely related, and such relation
 becomes more important in the case of telecom service providers where
 Devs and Ops interact with widely distributed infrastructure.
 Limitations of interactions between centralized management and
 distributed control need to be carefully examined in such
 environments. Traditionally connectivity was the main concern: C and
 A was about delivering packets to destination. The features and
 capabilities of SDN and NFV are changing the concerns: for example
 in SDN, control plane Partitions no longer imply data plane
 Partitions, so A does not imply C. In practice, CAP reflects the need
 for a balance between local/distributed operations and
 remote/centralized operations.

 Furthermore to CAP aspects related to individual protocols,
 interdependencies between CAP choices for both resources and VNFs
 that are interconnected in a forwarding graph need to be considered.
 This is particularly relevant for the "Monitor and Validate
 Operational Quality" principle, as apart from transport protocols,
 most OAM functionality is generally configured in processes that are
 separated from the configuration of the monitored entities. Also,
 partitioning in a monitoring plane implemented through VNFs executed
 on compute resources does not necessarily mean that the dataplane of
 the monitored VNF was partitioned as well.

Meirosu, et al. Expires January 6, 2016 [Page 10]

Internet-Draft DevOps Challenges July 2015

7. Observability Challenges

 Monitoring algorithms need to operate in a scalable manner while
 providing the specified level of observability in the network, either
 for operation purposes (Ops part) or for debugging in a development
 phase (Dev part). We consider the following challenges:

 * Scalability - relates to the granularity of network observability,
 computational efficiency, communication overhead, and strategic
 placement of monitoring functions.

 * Distributed operation and information exchange between monitoring
 functions - monitoring functions supported by the nodes may perform
 specific operations (such as aggregation or filtering) locally on the
 collected data or within a defined data neighborhood and forward only
 the result to a management system. Such operation may require
 modifications of existing standards and development of protocols for
 efficient information exchange and messaging between monitoring
 functions. Different levels of granularity may need to be offered for
 the data exchanged through the interfaces, depending on the Dev or
 Ops role.

 * Configurability and conditional observability - monitoring
 functions that go beyond measuring simple metrics (such as delay, or
 packet loss) require expressive monitoring annotation languages for
 describing the functionality such that it can be programmed by a
 controller. Monitoring algorithms implementing self-adaptive
 monitoring behavior relative to local network situations may employ
 such annotation languages to receive high-level objectives (KPIs
 controlling tradeoffs between accuracy and measurement frequency, for
 example) and conditions for varying the measurement intensity.

 * Automation - includes mapping of monitoring functionality from a
 logical forwarding graph to virtual or physical instances executing
 in the infrastructure, as well as placement and re-placement of
 monitoring functionality for required observability coverage and
 configuration consistency upon updates in a dynamic network
 environment.

8. Verification Challenges

 Enabling ongoing verification of code is an important goal of
 continuous integration as part of the data center DevOps concept. In
 a telecom SDI, service definitions, decompositions and configurations
 need to be expressed in machine-readable encodings. For example,

Meirosu, et al. Expires January 6, 2016 [Page 11]

Internet-Draft DevOps Challenges July 2015

 configuration parameters could be expressed in terms of YANG data
 models. However, the infrastructure management layers (such as
 Software-Defined Network Controllers and Orchestration functions)
 might not always export such machine-readable descriptions of the
 runtime configuration state. In this case, the management layer
 itself could be expected to include a verification process that has
 the same challenges as the stand-alone verification processes we
 outline later in this section. In that sense, verification can be
 considered as a set of features providing gatekeeper functions to
 verify both the abstract service models and the proposed resource
 configuration before or right after the actual instantiation on the
 infrastructure layer takes place.

 A verification process can involve different layers of the network
 and service architecture. Starting from a high-level verification of
 the customer input (for example, a Service Graph as defined in [I-
 D.unify-nfvrg-challenges]), the verification process could go more in
 depth to reflect on the Service Function Chain configuration. At the
 lowest layer, the verification would handle the actual set of
 forwarding rules and other configuration parameters associated to a
 Service Function Chain instance. This enables the verification of
 more quantitative properties (e.g. compliance with resource
 availability), as well as a more detailed and precise verification of
 the abovementioned topological ones. Existing SDN verification tools
 could be deployed in this context, but the majority of them only
 operate on flow space rules commonly expressed using OpenFlow syntax.

 Moreover, such verification tools were designed for networks where
 the flow rules are necessary and sufficient to determine the
 forwarding state. This assumption is valid in networks composed only
 by network functions that forward traffic by analyzing only the
 packet headers (e.g. simple routers, stateless firewalls, etc.).
 Unfortunately, most of the real networks contain active network
 functions, represented by middle-boxes that dynamically change the
 forwarding path of a flow according to function-local algorithms and
 an internal state (that is based on the received packets), e.g. load
 balancers, packet marking modules and intrusion detection systems.
 The existing verification tools do not consider active network
 functions because they do not account for the dynamic transformation
 of an internal state into the verification process.

 Defining a set of verification tools that can account for active
 network functions is a significant challenge. In order to perform
 verification based on formal properties of the system, the internal
 states of an active (virtual or not) network function would need to
 be represented. Although these states would increase the verification
 process complexity (e.g., using simple model checking would not be

Meirosu, et al. Expires January 6, 2016 [Page 12]

Internet-Draft DevOps Challenges July 2015

 feasible due to state explosion), they help to better represent the
 forwarding behavior in real networks. A way to address this challenge
 is by attempting to summarize the internal state of an active network
 function in a way that allows for the verification process to finish
 within a reasonable time interval.

9. Troubleshooting Challenges

 One of the problems brought up by the complexity introduced by NFV
 and SDN is pinpointing the cause of a failure in an infrastructure
 that is under continuous change. Developing an agile and low-
 maintenance debugging mechanism for an architecture that is comprised
 of multiple layers and discrete components is a particularly
 challenging task to carry out. Verification, observability, and
 probe-based tools are key to troubleshooting processes, regardless
 whether they are followed by Dev or Ops personnel.

 * Automated troubleshooting workflows

 Failure is a frequently occurring event in network operation.
 Therefore, it is crucial to monitor components of the system
 periodically. Moreover, the troubleshooting system should search for
 the cause automatically in the case of failure. If the system follows
 a multi-layered architecture, monitoring and debugging actions should
 be performed on components from the topmost layer to the bottom layer
 in a chain. Likewise, the result of operations should be notified in
 reverse order. In this regard, one should be able to define
 monitoring and debugging actions through a common interface that
 employs layer hopping logic. Besides, this interface should allow
 fine-grained and automatic on-demand control for the integration of
 other monitoring and verification mechanisms and tools.

 * Troubleshooting with active measurement methods

 Besides detecting network changes based on passively collected
 information, active probes to quantify delay, network utilization and
 loss rate are important to debug errors and to evaluate the
 performance of network elements. While tools that are effective in
 determining such conditions for particular technologies were
 specified by IETF and other standardization organization, their use
 requires a significant amount of manual labor in terms of both
 configuration and interpretation of the results; see also Section
 Error! Reference source not found.

 In contrast, methods that test and debug networks systematically
 based on models generated from the router configuration, router
 interface tables or forwarding tables, would significantly simplify

Meirosu, et al. Expires January 6, 2016 [Page 13]

Internet-Draft DevOps Challenges July 2015

 management. They could be made usable by Dev personnel that have
 little expertise on diagnosing network defects. Such tools naturally
 lend themselves to integration into complex troubleshooting workflows
 that could be generated automatically based on the description of a
 particular service chain. However, there are scalability challenges
 associated with deploying such tools in a network. Some tools may
 poll each networking device for the forwarding table information to
 calculate the minimum number of test packets to be transmitted in the
 network. Therefore, as the network size and the forwarding table size
 increase, forwarding table updates for the tools may put a non-
 negligible load in the network.

10. Programmable network management

 The ability to automate a set of actions to be performed on the
 infrastructure, be it virtual or physical, is key to productivity
 increases following the application of DevOps principles. Previous
 sections in this document touched on different dimensions of
 programmability:

 - Section 6 approached programmability in the context of developing
 new capabilities for monitoring and for dynamically setting
 configuration parameters of deployed monitoring functions

 - Section 7 reflected on the need to determine the correctness of
 actions that are to be inflicted on the infrastructure as result
 of executing a set of high-level instructions

 - Section 8 considered programmability in the perspective of an
 interface to facilitate dynamic orchestration of troubleshooting
 steps towards building workflows and for reducing the manual steps
 required in troubleshooting processes

 We expect that programmable network management - along the lines of
 [RFC7426] - will draw more interest as we move forward. For
 example,in [I-D.unify-nfvrg-challenges], the authors identify the
 need for presenting programmable interfaces that accept instructions
 in a standards-supported manner for the Two-way Active Measurement
 Protocol (TWAMP)TWAMP protocol. More specifically, an excellent
 example in this case is traffic measurements, which are extensively
 used today to determine SLA adherence as well as debug and
 troubleshoot pain points in service delivery. TWAMP is both widely
 implemented by all established vendors and deployed by most global
 operators. However, TWAMP management and control today relies solely
 on diverse and proprietary tools provided by the respective vendors

Meirosu, et al. Expires January 6, 2016 [Page 14]

https://tools.ietf.org/pdf/rfc7426

Internet-Draft DevOps Challenges July 2015

 of the equipment. For large, virtualized, and dynamically
 instantiated infrastructures where network functions are placed
 according to orchestration algorithms proprietary mechanisms for
 managing TWAMP measurements have severe limitations. For example,
 today’s TWAMP implementations are managed by vendor-specific,
 typically command-line interfaces (CLI), which can be scripted on a
 platform-by-platform basis. As a result, although the control and
 test measurement protocols are standardized, their respective
 management is not. This hinders dramatically the possibility to
 integrate such deployed functionality in the SP-DevOps concept. In
 this particular case, recent efforts in the IPPM WG
 [I-D.cmzrjp-ippm-twamp-yang] aim to define a standard TWAMP data
 model and effectively increase the programmability of TWAMP
 deployments in the future.

 Data center DevOps tools, such as those surveyed in [D4.1], developed
 proprietary methods for describing and interacting through interfaces
 with the managed infrastructure. Within certain communities, they
 became de-facto standards in the same way particular CLIs became de-
 facto standards for Internet professionals. Although open-source
 components and a strong community involvement exists, the diversity
 of the new languages and interfaces creates a burden for both vendors
 in terms of choosing which ones to prioritize for support, and then
 developing the functionality and operators that determine what fits
 best for the requirements of their systems.

11. DevOps Performance Metrics

 Defining a set of metrics that are used as performance indicators is
 important for service providers to ensure the successful deployment
 and operation of a service in the software-defined telecom
 infrastructure.

 We identify three types of considerations that are particularly
 relevant for these metrics: 1) technical considerations directly
 related to the service provided, 2) process-related considerations
 regarding the deployment, maintenance and troubleshooting of the
 service, i.e. concerning the operation of VNFs, and 3) cost-related
 considerations associated to the benefits from using a Software-
 Defined Telecom Infrastructure.

 First, technical performance metrics shall be service-dependent/-
 oriented and may address inter-alia service performance in terms of
 delay, throughput, congestion, energy consumption, availability, etc.
 Acceptable performance levels should be mapped to SLAs and the

Meirosu, et al. Expires January 6, 2016 [Page 15]

Internet-Draft DevOps Challenges July 2015

 requirements of the service users. Metrics in this category were
 defined in IETF working groups and other standardization
 organizations with responsibility over particular service or
 infrastructure descriptions.

 Second, process-related metrics shall serve a wider perspective in
 the sense that they shall be applicable for multiple types of
 services. For instance, process-related metrics may include: number
 of probes for end-to-end QoS monitoring, number of on-site
 interventions, number of unused alarms, number of configuration
 mistakes, incident/trouble delay resolution, delay between service
 order and deliver, or number of self-care operations.

 Third, cost-related metrics shall be used to monitor and assess the
 benefit of employing SDI compared to the usage of legacy hardware
 infrastructure with respect to operational costs, e.g. possible man-
 hours reductions, elimination of deployment and configuration
 mistakes, etc.

 Finally, identifying a number of highly relevant metrics for DevOps
 and especially monitoring and measuring them is highly challenging
 because of the amount and availability of data sources that could be
 aggregated within one such metric, e.g. calculation of human
 intervention, or secret aspects of costs.

12. Security Considerations

 TBD

13. IANA Considerations

 This memo includes no request to IANA.

14. Informative References

 [NFVMANO] ETSI, "Network Function Virtualization (NFV) Management
 and Orchestration V0.6.1 (draft)", Jul. 2014

Meirosu, et al. Expires January 6, 2016 [Page 16]

Internet-Draft DevOps Challenges July 2015

 [I-D.aldrin-sfc-oam-framework] S. Aldrin, R. Pignataro, N. Akiya.
 "Service Function Chaining Operations, Administration and
 Maintenance Framework", draft-aldrin-sfc-oam-framework-01 ,
 (work in progress), July 2014.

 [I-D.lee-sfc-verification] S. Lee and M. Shin. "Service Function
 Chaining Verification", draft-lee-sfc-verification-00 ,
 (work in progress), February 2014.

 [RFC7426] E. Haleplidis (Ed.), K. Pentikousis (Ed.), S. Denazis, J.
 Hadi Salim, D. Meyer, and O. Koufopavlou, "Software Defined
 Networking (SDN): Layers and Architecture Terminology",
 RFC 7426 , January 2015

 [RFC7149] M. Boucadair and C Jaquenet. "Software-Defined Networking:
 A Perspective from within a Service Provider Environment",
 RFC 7149 , March 2014.

 [TR228] TMForum Gap Analysis Related to MANO Work. TR228, May 2014

 [I-D.unify-nfvrg-challenges] R. Szabo et al. "Unifying Carrier and
 Cloud Networks: Problem Statement and Challenges", draft-
 unify-nfvrg-challenges-02 (work in progress), July 2015

 [I-D.cmzrjp-ippm-twamp-yang] Civil, R., Morton, A., Zheng, L.,
 Rahman, R., Jethanandani, M., and K. Pentikousis, "Two-Way
 Active Measurement Protocol (TWAMP) Data Model", draft-
 cmzrjp-ippm-twamp-yang-01 (work in progress), July 2015.

 [D4.1] W. John et al. D4.1 Initial requirements for the SP-DevOps
 concept, universal node capabilities and proposed tools,
 August 2014.

 [SDNsurvey] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. Esteve
 Rothenberg, S. Azodolmolky, S. Uhlig. "Software-Defined
 Networking: A Comprehensive Survey." To appear in
 proceedings of the IEEE, 2015.

 [DevOpsP] "DevOps, the IBM Approach" 2013. [Online].

 [Y1564] ITU-R Recommendation Y.1564: Ethernet service activation
 test methodology, March 2011

 [CAP] E. Brewer, "CAP twelve years later: How the "rules" have
 changed", IEEE Computer, vol.45, no.2, pp.23,29, Feb. 2012.

Meirosu, et al. Expires January 6, 2016 [Page 17]

https://tools.ietf.org/pdf/draft-aldrin-sfc-oam-framework-01
https://tools.ietf.org/pdf/draft-lee-sfc-verification-00
https://tools.ietf.org/pdf/rfc7426
https://tools.ietf.org/pdf/rfc7149
https://tools.ietf.org/pdf/draft-unify-nfvrg-challenges-02
https://tools.ietf.org/pdf/draft-unify-nfvrg-challenges-02
https://tools.ietf.org/pdf/draft-cmzrjp-ippm-twamp-yang-01
https://tools.ietf.org/pdf/draft-cmzrjp-ippm-twamp-yang-01

Internet-Draft DevOps Challenges July 2015

 [H2014] N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres, N.
 McKeown; "I Know What Your Packet Did Last Hop: Using
 Packet Histories to Troubleshoot Networks", In Proceedings
 of the 11th USENIX Symposium on Networked Systems Design
 and Implementation (NSDI 14), pp.71-95

 [W2011] A. Wundsam, D. Levin, S. Seetharaman, A. Feldmann;
 "OFRewind: Enabling Record and Replay Troubleshooting for
 Networks". In Proceedings of the Usenix Anual Technical
 Conference (Usenix ATC ’11), pp 327-340

 [S2010] E. Al-Shaer and S. Al-Haj. "FlowChecker: configuration
 analysis and verification of federated Openflow
 infrastructures" In Proceedings of the 3rd ACM workshop on
 Assurable and usable security configuration (SafeConfig
 ’10). Pp. 37-44

 [OSandS] S. Wright, D. Druta, "Open Source and Standards: The Role
 of Open Source in the Dialogue between Research and
 Standardization" Globecom Workshops (GC Wkshps), 2014 ,
 pp.650,655, 8-12 Dec. 2014

15. Acknowledgments

 The research leading to these results has received funding from the
 European Union Seventh Framework Programme FP7/2007-2013 under grant
 agreement no. 619609 - the UNIFY project. The views expressed here
 are those of the authors only. The European Commission is not liable
 for any use that may be made of the information in this document.

 We would like to thank in particular the UNIFY WP4 contributors, the
 internal reviewers of the UNIFY WP4 deliverables, and Wolfgang John
 from Ericsson for the useful discussions and insightful comments.

 This document was prepared using 2-Word-v2.0.template.dot.

Meirosu, et al. Expires January 6, 2016 [Page 18]

Internet-Draft DevOps Challenges July 2015

Authors’ Addresses

 Catalin Meirosu
 Ericsson Research
 S-16480 Stockholm, Sweden
 Email: catalin.meirosu@ericsson.com

 Antonio Manzalini
 Telecom Italia
 Via Reiss Romoli, 274
 10148 - Torino, Italy
 Email: antonio.manzalini@telecomitalia.it

 Juhoon Kim
 Deutsche Telekom AG
 Winterfeldtstr. 21
 10781 Berlin, Germany
 Email: J.Kim@telekom.de

 Rebecca Steinert
 SICS Swedish ICT AB
 Box 1263, SE-16429 Kista, Sweden
 Email: rebste@sics.se

 Sachin Sharma
 Ghent University-iMinds
 Research group IBCN - Department of Information Technology
 Zuiderpoort Office Park, Blok C0
 Gaston Crommenlaan 8 bus 201
 B-9050 Gent, Belgium
 Email: sachin.sharma@intec.ugent.be

 Guido Marchetto
 Politecnico di Torino
 Corso Duca degli Abruzzi 24
 10129 - Torino, Italy
 Email: guido.marchetto@polito.it

 Ioanna Papafili
 Hellenic Telecommunications Organization
 Measurements and Wireless Technologies Section
 Laboratories and New Technologies Division
 2, Spartis & Pelika str., Maroussi,
 GR-15122, Attica, Greece
 Buidling E, Office 102

Meirosu, et al. Expires January 6, 2016 [Page 19]

Internet-Draft DevOps Challenges July 2015

 Email: iopapafi@oteresearch.gr

 Kostas Pentikousis
 EICT GmbH
 Torgauer Strasse 12-15
 Berlin 10829
 Germany
 Email: k.pentikousis@eict.de

 Steven Wright
 AT&T Services Inc.
 1057 Lenox Park Blvd NE, STE 4D28
 Atlanta, GA 30319
 USA
 Email: sw3588@att.com

Meirosu, et al. Expires January 6, 2016 [Page 20]

