1,471 research outputs found

    RobustSPAM for Inference from Noisy Longitudinal Data and Preservation of Privacy

    Get PDF
    The availability of complex temporal datasets in social, health and consumer contexts has driven the development of pattern mining techniques that enable the use of classical machine learning tools for model building. In this work we introduce a robust temporal pattern mining framework for finding predictive patterns in complex timestamped multivariate and noisy data. We design an algorithm RobustSPAM that enables mining of temporal patterns from data with noisy timestamps. We apply our algorithm to social care data from a local government body and investigate how the efficiency and accuracy of the method depends on the level of noise. We further explore the trade-off between the loss of predictivity due to perturbation of timestamps and the risk of person re-identification

    Interpreting random forest models using a feature contribution method

    Get PDF
    Model interpretation is one of the key aspects of the model evaluation process. The explanation of the relationship between model variables and outputs is easy for statistical models, such as linear regressions, thanks to the availability of model parameters and their statistical significance. For “black box” models, such as random forest, this information is hidden inside the model structure. This work presents an approach for computing feature contributions for random forest classification models. It allows for the determination of the influence of each variable on the model prediction for an individual instance. Interpretation of feature contributions for two UCI benchmark datasets shows the potential of the proposed methodology. The robustness of results is demonstrated through an extensive analysis of feature contributions calculated for a large number of generated random forest models

    Surface-driven electronic structure in LaFeAsO studied by angle resolved photoemission spectroscopy

    Get PDF
    We measured the electronic structure of an iron arsenic parent compound LaFeAsO using angle resolved photoemission spectroscopy (ARPES). By comparing with a full-potential Linear Augmented PlaneWave calculation we show that the extra large Gamma hole pocket measured via ARPES comes from electronic structure at the sample surface. Based on this we discuss the strong polarization dependence of the band structure and a temperature-dependent hole-like band around the M point. The two phenomena give additional evidences for the existence of the surface-driven electronic structure.Comment: 6 pages, 6 figure

    Experimental and theoretical electronic structure of EuRh2As2

    Get PDF
    The Fermi surfaces (FS's) and band dispersions of EuRh2As2 have been investigated using angle-resolved photoemission spectroscopy. The results in the high-temperature paramagnetic state are in good agreement with the full potential linearized augmented plane wave calculations, especially in the context of the shape of the two-dimensional FS's and band dispersion around the Gamma (0,0) and X (pi,pi) points. Interesting changes in band folding are predicted by the theoretical calculations below the magnetic transition temperature Tn=47K. However, by comparing the FS's measured at 60K and 40K, we did not observe any signature of this transition at the Fermi energy indicating a very weak coupling of the electrons to the ordered magnetic moments or strong fluctuations. Furthermore, the FS does not change across the temperature (~ 25K) where changes are observed in the Hall coefficient. Notably, the Fermi surface deviates drastically from the usual FS of the superconducting iron-based AFe2As2 parent compounds, including the absence of nesting between the Gamma and X FS pockets.Comment: 4 pages, 4 figure

    NA49/NA61: results and plans on beam energy and system size scan at the CERN SPS

    Full text link
    This paper presents results and plans of the NA49 and NA61/SHINE experiments at the CERN Super Proton Synchrotron concerning the study of relativistic nucleus-nucleus interactions. First, the NA49 evidence for the energy threshold of creating quark-gluon plasma, the onset of deconfinement, in central lead-lead collisions around 30A GeV is reviewed. Then the status of the NA61/SHINE systematic study of properties of the onset of deconfinement is presented. Second, the search for the critical point of strongly interacting matter undertaken by both experiments is discussed. NA49 measured large fluctuations at the top SPS energy, 158A GeV, in collisions of light and medium size nuclei. They seem to indicate that the critical point exists and is located close to baryonic chemical potential of about 250 MeV. The NA61/SHINE beam energy and system size scan started in 2009 will provide evidence for the existence of the critical point or refute the interpretation of the NA49 fluctuation data in terms of the critical point.Comment: 11 pages, invited talk at Quark Matter 201
    • …
    corecore