243 research outputs found

    Research findings and decision making: the case of renewable energy

    Get PDF
    Background Energy policies from local to global scale are increasingly questioned in terms of sustainability. Evidence- and science-based decision making in this field needs a robust and transparent integrated assessment of policy options. Nevertheless, scientific findings do not lead straight to political conclusions, and the relationship between science and decision making is a debated issue. The article discusses the main barriers to effective interaction and communication between scientific enquiry and decision making and proposes some effective ways to overcome these barriers, starting from experiences in the biomass energy sector

    A TGA/FT-IR study for OC and EC quantification applied to carbonaceous aerosol collected in Milan (Italy)

    No full text
    International audienceCarbon analysis consists in the evaluation of the carbonaceous content of the aerosol (TC) but, more importantly, of its distribution between the two components EC (Elemental Carbon) and OC (Organic Carbon) that are characterized by different physical-chemical properties. In spite of the numerous studies focused on this topic, nowadays, a universal methodology for the determination of the two components EC and OC is not available. In fact OC and EC (also known as black carbon or soot) are operationally defined by the method of analysis and, as a consequence, different methods can produce different results. In this paper we present results on the application of TGA/FT-IR (Thermogravimetric Analysis/Fourier Transformed Infrared Spectroscopy) to the characterization of carbonaceous aerosols. The analytical methodology was applied to PM10 four-hour time resolution samples collected in Milan urban area. The method is a two-steps thermal one and bases itself on the different thermal behaviour of OC and EC. It has been set up analyzing suitable standards containing both organic and elemental carbon. Carbon quantification is achieved by on-line, continuous monitoring of CO2 infrared absorption at 2361 cm?1. A good separation between OC and EC on particulate matter samples has been obtained. Ranges and average values were respectively 12?70 µg/m3 and 20 µg/m3 for OC and 0.2?6 µg/m3 and 2 µg/m3 for EC. On average OC and EC made up respectively 29.3 (±12.8) % and 2.5 (±1.8) % of PM10 fraction. The method reliability has been verified by comparison with TOT (Thermal Optical Transmission) technique. OC and EC values determined for ambient samples of PM10 were also correlated with meteorological parameters as well as with Radon concentrations

    4-hours resolution data to study PM10 in a “hot spot” area in Europe

    Get PDF
    Nowadays, high-time resolved aerosol studies are mandatory to better understand atmospheric processes, such as formation, removal, transport, deposition or chemical reactions. This work focuses on PM10 physical and chemical characterisation with high-time resolution: elements (from Na to Pb), ions and OC/EC fractions concentration were determined during two weeks in summer and two in winter 2006 with 4-hours resolution. Further measurements aimed at hourly elemental characterisation of fine and coarse fractions and at the determination of particles number concentration in the 0.25\u201332 \u3bcm size range in 31 bins. The chemical mass closure was carried out in both seasons, enhancing intra-day differences in PM10 composition. In Milan, the highest contribution came from organic matter (34% and 33% in summer and winter, respectively); other important contributors were secondary inorganic compounds (16% and 24% in summer and winter, respectively) and, in summer, crustal matter (14%). Temporal trends showed strong variations in PM10 composition during contiguous time-slots and diurnal variations in different components contribution were identified. Moreover, peculiar phenomena, which would have hardly been detected with 24-hours samplings, were evidenced. Particles removal due to precipitations, aerosol local production and long range transport were studied in detail

    A mass closure and PMF source apportionment study on the sub-micron sized aerosol fraction at urban sites in Italy

    Get PDF
    Sub-micron sized particles are of increasing concern owing to their effects on human health and on the environment. Up to now there are still very few studies on PM1 (i.e. particulate matter with aerodynamic diameter smaller than 1 mm) chemical characterisation; the sub-micron sized fraction is not under regulations although it is of interest because it is almost exclusively associated to anthropogenic sources. To perform the first large-scale assessment of sub-micron sized aerosol concentrations, composition and sources, two monitoring campaigns at three urban sites in Italy were carried out during the wintertime and summertime of 2004. Chemical characterisation (elements, soluble ionic fraction, elemental and organic carbon) was carried out on PM1 samples: major contributions were due to organic matter (about 30% in summer and 50% in winter) and ammonium sulphate (about 10% in winter and 40% in summer). During the cold season, nitrates also contributed up to 30% in Milan (lower contributions were registered at the other two urban sites). Chemical mass closure was achieved with an unaccounted mass in the range 14\u201322%. Positive Matrix Factorisation (PMF) was applied to identify the major submicron sized particles\u2019 sources

    Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps)

    Get PDF
    Abstract. The amount of reflected energy by snow and ice plays a fundamental role in their melting processes. Different non-ice materials (carbonaceous particles, mineral dust (MD), microorganisms, algae, etc.) can decrease the reflectance of snow and ice promoting the melt. The object of this paper is to assess the capability of field and satellite (EO-1 Hyperion) hyperspectral data to characterize the impact of light-absorbing impurities (LAIs) on the surface reflectance of ice and snow of the Vadret da Morteratsch, a large valley glacier in the Swiss Alps. The spatial distribution of both narrow-band and broad-band indices derived from Hyperion was analyzed in relation to ice and snow impurities. In situ and laboratory reflectance spectra were acquired to characterize the optical properties of ice and cryoconite samples. The concentrations of elemental carbon (EC), organic carbon (OC) and levoglucosan were also determined to characterize the impurities found in cryoconite. Multi-wavelength absorbance spectra were measured to compare the optical properties of cryoconite samples and local moraine sediments. In situ reflectance spectra showed that the presence of impurities reduced ice reflectance in visible wavelengths by 80–90 %. Satellite data also showed the outcropping of dust during the melting season in the upper parts of the glacier, revealing that seasonal input of atmospheric dust can decrease the reflectance also in the accumulation zone of the glacier. The presence of EC and OC in cryoconite samples suggests a relevant role of carbonaceous and organic material in the darkening of the ablation zone. This darkening effect is added to that caused by fine debris from lateral moraines, which is assumed to represent a large fraction of cryoconite. Possible input of anthropogenic activity cannot be excluded and further research is needed to assess the role of human activities in the darkening process of glaciers observed in recent years

    PM10 source apportionment based on PMF and chemical tracers during different cruises in Western Mediterranean

    Get PDF
    In the Western Mediterranean Basin, frequently exposed to high levels of air pollutants, an important source of pollution which influence the emission, is the intensive ship traffic. The Joint Research Centre of the European Commission (JRC, EC) has started a long-term monitoring program along different years over the Mediterranean Sea based on observations from a cruise ship following a regular route in the Western Mediterranean, in collaboration with the Department of Physics of University of Genoa. In this framework, an intensive PM10 sampling campaign was organized in the summer of 2011, in order to fill in the gap of data recovered (in term of PM speciation) during the previous campaigns (Schembari et al., 2014) and to get a better and complete description of PM sources. During this campaign the route of the ship was Civitavecchia-Savona-Barcelona-Palma de Mallorca- Malta (Valletta)-Palermo-Civitavecchia (see Figure 1). The PM samples were collected on Quartz and Teflon filters (47mm diameter, flow rate 2.3 m3/h) using in parallel two Sven Leckel Ingenieurburo sequential samplers, placed on the top of the cabin where the monitoring and meteorological station was located. Samples were analyzed with different techniques: Energy Dispersive X-Ray Fluorescence at the Department of Physics of Genoa (Ariola et al, 2006); Ion Chromatography (Chow and Watson, 1999) at Department of Chemistry of University of Milan; Thermo-optical analysis (Birch and Cary, 1996) at the JRC laboratory. Ion Beam Analysis measurements of the Teflon filters sampled during the week of September 2011, using simultaneously PIXE, EBS and PESA techniques (Chiari, 2005), were performed at the 3 MV Tandetron accelerator of the LABEC laboratory of INFN in Florence. The data were used to identify and characterize the main PM10 sources along the ship route, with a focus on ship emissions, through apportionment Positive Matrix Factorization receptor modelling, PMF (Paatero et al, 1994). Particular attention was given to the evidence of emissions from heavy fuel oil combustion by ships, known to be an important source of secondary sulphate aerosol. Five sources of aerosol were resolved by the PMF analysis with a new database. The analysis allows distinguishing between secondary and primary particle mass resulting from ship emissions: V and Ni were found to be suitable tracers of heavy fuel oil combustion source during the campaign. The source having the largest impact on PM10 was identified as Sulphate source by PMF. The correlations between Sulphate and V and Ni showed the influence of ship emissions on sulphate in marine air masses

    Long-term chemical analysis and organic aerosol source apportionment at 9 sites in Central Europe : Source identification and uncertainty assessment

    Get PDF
    Long-term monitoring of the organic aerosol is important for epidemiological studies, validation of atmospheric models, and air quality management. In this study, we apply a recently developed filter-based offline methodology of the 20 aerosol mass spectrometer to investigate the regional and seasonal differences of contributing organic aerosol sources. We present offline-AMS measurements for particulate matter smaller than 10 \u3bcm 9 stations in central Europe with different exposure characteristics for the entire year of 2013 (819 samples). The focus of this study is a detailed source apportionment analysis (using PMF) including in-depth assessment of the related uncertainties. Primary organic aerosol (POA) is separated in three components: hydrocarbon-like OA which is related to traffic emissions (HOA), cooking OA (COA), and biomass- 25 burning OA (BBOA). We observe enhanced production of secondary organic aerosol (SOA) in summer, following the increase in biogenic emissions with temperature (summer oxygenated OA, SOOA). In addition, a SOA component was extracted that correlated with anthropogenic secondary inorganic species which is dominant in winter (winter oxygenated OA, WOOA). A factor (SC-OA) explaining sulfur-containing fragments (CH3SO2+), which has an event-driven temporal behavior, was also identified. The relative yearly average factor contributions range for HOA from 3 to 15%, for COA from 30 3 to 31%, for BBOA from 11 to 61%, for SC-OA from 5 to 23%, for WOOA from 14 to 28%, and for SOOA from 14 to 40%. The uncertainty of the relative average factor contribution lies between 5 and 9% of OA. At the sites north of the alpine crest, the sum of HOA, COA, and BBOA (POA) contributes less to OA (POA/OA=0.3) than at the southern alpine valley sites (0.6). BBOA is the main contributor to POA with 88% in alpine valleys and 43% north of the alpine crest. Furthermore, the influence of primary biological particles (PBOA), not resolved by PMF, is estimated and could contribute significantly to OA in PM10

    Collective spin excitations in a quantum spin ladder probed by high-resolution Resonant Inelastic X-ray Scattering

    Get PDF
    We investigate magnetic excitations in the spin-ladder compound Sr14_{14}Cu24_{24}O41_{41} using high-resolution Cu L3L_3-edge Resonant Inelastic X-ray Scattering (RIXS). Our findings demonstrate that RIXS couples to collective spin excitations from a quantum spin-liquid ground state. In contrast to Inelastic Neutron Scattering (INS), the RIXS cross section changes only moderately over the entire Brillouin Zone (BZ), revealing a high sensitivity also at small momentum transfers. The two-triplon energy gap is found to be 100±30100\pm 30 meV. Our results are supported by calculations within an effective Hubbard model for a finite-size cluster.Comment: 10 pages, 4 figures, revised versio
    • …
    corecore