18,055 research outputs found
The gravitational wave spectrum of non-axisymmetric, freely precessing neutron stars
Evidence for free precession has been observed in the radio signature of
several pulsars. Freely precessing pulsars radiate gravitationally at
frequencies near the rotation rate and twice the rotation rate, which for
rotation frequencies greater than Hz is in the LIGO band. In older
work, the gravitational wave spectrum of a precessing neutron star has been
evaluated to first order in a small precession angle. Here we calculate the
contributions to second order in the wobble angle, and we find that a new
spectral line emerges. We show that for reasonable wobble angles, the
second-order line may well be observable with the proposed advanced LIGO
detector for precessing neutron stars as far away as the galactic center.
Observation of the full second-order spectrum permits a direct measurement of
the star's wobble angle, oblateness, and deviation from axisymmetry, with the
potential to significantly increase our understanding of neutron star
structure.Comment: 22 pages, 1 figure. Minor changes in the text, typos correcte
Stripe-hexagon competition in forced pattern forming systems with broken up-down symmetry
We investigate the response of two-dimensional pattern forming systems with a
broken up-down symmetry, such as chemical reactions, to spatially resonant
forcing and propose related experiments. The nonlinear behavior immediately
above threshold is analyzed in terms of amplitude equations suggested for a
and ratio between the wavelength of the spatial periodic forcing
and the wavelength of the pattern of the respective system. Both sets of
coupled amplitude equations are derived by a perturbative method from the
Lengyel-Epstein model describing a chemical reaction showing Turing patterns,
which gives us the opportunity to relate the generic response scenarios to a
specific pattern forming system. The nonlinear competition between stripe
patterns and distorted hexagons is explored and their range of existence,
stability and coexistence is determined. Whereas without modulations hexagonal
patterns are always preferred near onset of pattern formation, single mode
solutions (stripes) are favored close to threshold for modulation amplitudes
beyond some critical value. Hence distorted hexagons only occur in a finite
range of the control parameter and their interval of existence shrinks to zero
with increasing values of the modulation amplitude. Furthermore depending on
the modulation amplitude the transition between stripes and distorted hexagons
is either sub- or supercritical.Comment: 10 pages, 12 figures, submitted to Physical Review
TLEP, first step in a long-term vision for HEP
The discovery of H(126) has renewed interest in circular e+e- colliders that
can operate as Higgs factories, which benefit from three unique
characteristics: i) high luminosity and reliability, ii) the availability of
several interaction points, iii) superior beam energy accuracy. TLEP is an e+e-
storage ring of 80-km circumference that can operate with very high luminosity
from the Z peak (90 GeV) to the top quark pair threshold (350 GeV). It can
achieve transverse beam polarization at the Z peak and WW threshold, giving it
unparalleled accuracy on the beam energy. A preliminary study indicates that an
80 km tunnel could be constructed around CERN. Such a tunnel would allow a 100
TeV proton-proton collider to be established in the same ring (VHE-LHC),
offering a long term vision.Comment: This is a contribution to the the Snowmass process 2013: Frontier
Capabilitie
Comments on "Wall-plug (AC) power consumption of a very high energy e+/e- storage ring collider" by Marc Ross
The paper arXiv:1308.0735 questions some of the technical assumptions made by
the TLEP Steering Group when estimating in arXiv:1305.6498 the power
requirement for the very high energy e+e- storage ring collider TLEP. We show
that our assumptions are based solidly on CERN experience with LEP and the LHC,
as well accelerators elsewhere, and confirm our earlier baseline estimate of
the TLEP power consumption.Comment: 6 page
The Frequency Dependence of Critical-velocity Behavior in Oscillatory Flow of Superfluid Helium-4 Through a 2-micrometer by 2-micrometer Aperture in a Thin Foil
The critical-velocity behavior of oscillatory superfluid Helium-4 flow
through a 2-micrometer by 2-micrometer aperture in a 0.1-micrometer-thick foil
has been studied from 0.36 K to 2.10 K at frequencies from less than 50 Hz up
to above 1880 Hz. The pressure remained less than 0.5 bar. In early runs during
which the frequency remained below 400 Hz, the critical velocity was a
nearly-linearly decreasing function of increasing temperature throughout the
region of temperature studied. In runs at the lowest frequencies, isolated 2 Pi
phase slips could be observed at the onset of dissipation. In runs with
frequencies higher than 400 Hz, downward curvature was observed in the decrease
of critical velocity with increasing temperature. In addition, above 500 Hz an
alteration in supercritical behavior was seen at the lower temperatures,
involving the appearance of large energy-loss events. These irregular events
typically lasted a few tens of half-cycles of oscillation and could involve
hundreds of times more energy loss than would have occurred in a single
complete 2 Pi phase slip at maximum flow. The temperatures at which this
altered behavior was observed rose with frequency, from ~ 0.6 K and below, at
500 Hz, to ~ 1.0 K and below, at 1880 Hz.Comment: 35 pages, 13 figures, prequel to cond-mat/050203
- …