31,434 research outputs found

    Generalised Unitarity for Dimensionally Regulated Amplitudes

    Get PDF
    We present a novel set of Feynman rules and generalised unitarity cut-conditions for computing one-loop amplitudes via d-dimensional integrand reduction algorithm. Our algorithm is suited for analytic as well as numerical result, because all ingredients turn out to have a four-dimensional representation. We will apply this formalism to NLO QCD corrections.Comment: Presented at SILAFAE 2014, 24-28 Nov, Ruta N, Medellin, Colombi

    Quantum Electrodynamics vacuum polarization solver

    Get PDF
    The self-consistent modeling of vacuum polarization due to virtual electron-positron fluctuations is of relevance for many near term experiments associated with high intensity radiation sources and represents a milestone in describing scenarios of extreme energy density. We present a generalized finite-difference time-domain solver that can incorporate the modifications to Maxwell's equations due to vacuum polarization. Our multidimensional solver reproduced in one dimensional configurations the results for which an analytic treatment is possible, yielding vacuum harmonic generation and birefringence. The solver has also been tested for two-dimensional scenarios where finite laser beam spot sizes must be taken into account. We employ this solver to explore different types of counter-propagating configurations that can be relevant for future planned experiments aiming to detect quantum vacuum dynamics at ultra-high electromagnetic field intensities

    Time-resolved spectroscopy of the pulsating CV GW Lib

    Get PDF
    We present time-resolved optical spectroscopy of the dwarf nova GW Librae during its rare 2007 April superoutburst and compare these with quiescent epochs. The data provide the first opportunity to track the evolution of the principal spectral features. In the early stages of the outburst, the optically thick disc dominates the optical and the line components show clear orbital radial velocity excursions. In the course of several weeks, optically thin regions become more prominent as strong emission lines replace the broad disc absorption. Post-outburst spectroscopy covering the I band illustrates the advantages of Ca II relative to the commonly used Balmer lines when attempting to constrain binary parameters. Due to the lower ionization energy combined with smaller thermal and shear broadening of these lines, a sharp emission component is seen to be moving in between the accretion disc peaks in the Ca II line. No such component is visible in the Balmer lines. We interpret this as an emission component originating on the hitherto unseen mass donor star. This emission component has a mean velocity of similar to -15 +/- 5 km s(-1) which is associated with the systemic velocity., and a velocity semi-amplitude of K-em = 82.2 +/- 4.9 km s(-1). Doppler tomography reveals an asymmetric accretion disc, with the S-wave mapping to a sharp spot in the tomogram with a velocity consistent to what is obtained with line profile fitting. A centre of symmetry analysis of the disc component suggests a very small value for the WD orbital velocity K-1 as is also inferred from double Gaussian fits to the spectral lines. While our conservative dynamical limits place a hard upper limit on the binary mass ratio of q < 0.23, we favour a significantly lower value near q similar to 0.06. Pulsation modelling suggests a white dwarf mass similar to 1 M-circle dot. This, paired with a low-mass donor, near the empirical sequence of an evolved cataclysmic variable close to the period bounce, appears to be consistent with all the observational constraints to date

    Broadening the bandwidth of entangled photons: a step towards the generation of extremely short biphotons

    Full text link
    We demonstrate a technique that allows to fully control the bandwidth of entangled photons independently of the frequency band of interest and of the nonlinear crystal. We show that this technique allows to generate nearly transform-limited biphotons with almost one octave of bandwidth (hundreds of THz) which corresponds to correlation times of just a few femtoseconds. The presented method becomes an enabling tool for attosecond entangled-photons quantum optics. The technique can also be used to generate paired photons with a very high degree of entanglement.Comment: 4 page

    The light curve of the companion to PSR B1957+20

    Get PDF
    We present a new analysis of the light curve for the secondary star in the eclipsing binary millisecond pulsar system PSR B1957+20. Combining previous data and new data points at minimum from the Hubble Space Telescope, we have 100% coverage in the R-band. We also have a number of new K_s-band data points, which we use to constrain the infrared magnitude of the system. We model this with the Eclipsing Light Curve code (ELC). From the modelling with the ELC code we obtain colour information about the secondary at minimum light in BVRI and K. For our best fit model we are able to constrain the system inclination to 65 +/- 2 degrees for pulsar masses ranging from 1.3 -- 1.9 M_sun. The pulsar mass is unconstrained. We also find that the secondary star is not filling its Roche lobe. The temperature of the un-irradiated side of the companion is in agreement with previous estimates and we find that the observed temperature gradient across the secondary star is physically sustainable.Comment: 6 pages, 4 figures & 3tables. Accepted for publication in MNRA

    Production of optical phase space vortices with non-locally distributed mode converters

    Full text link
    Optical vortices have been observed in a wide variety of optical systems. They can be observed directly in the wavefront of optical beams, or in the correlations between pairs of entangled photons. We present a novel optical vortex which appears in a non-local plane of the two-photon phase space, composed of a single degree of freedom of each photon of an entangled pair. The preparation of this vortex can be viewed as a "non-local" or distributed mode converter. We show how these novel optical vortices of arbitrary order can be prepared in the spatial degrees of freedom of entangled photons.Comment: To appear in upcoming special issue "Orbital Angular Momentum" of the Journal of Optic
    • …
    corecore