2,887 research outputs found

    Fast hashing with Strong Concentration Bounds

    Full text link
    Previous work on tabulation hashing by Patrascu and Thorup from STOC'11 on simple tabulation and from SODA'13 on twisted tabulation offered Chernoff-style concentration bounds on hash based sums, e.g., the number of balls/keys hashing to a given bin, but under some quite severe restrictions on the expected values of these sums. The basic idea in tabulation hashing is to view a key as consisting of c=O(1)c=O(1) characters, e.g., a 64-bit key as c=8c=8 characters of 8-bits. The character domain Σ\Sigma should be small enough that character tables of size Σ|\Sigma| fit in fast cache. The schemes then use O(1)O(1) tables of this size, so the space of tabulation hashing is O(Σ)O(|\Sigma|). However, the concentration bounds by Patrascu and Thorup only apply if the expected sums are Σ\ll |\Sigma|. To see the problem, consider the very simple case where we use tabulation hashing to throw nn balls into mm bins and want to analyse the number of balls in a given bin. With their concentration bounds, we are fine if n=mn=m, for then the expected value is 11. However, if m=2m=2, as when tossing nn unbiased coins, the expected value n/2n/2 is Σ\gg |\Sigma| for large data sets, e.g., data sets that do not fit in fast cache. To handle expectations that go beyond the limits of our small space, we need a much more advanced analysis of simple tabulation, plus a new tabulation technique that we call \emph{tabulation-permutation} hashing which is at most twice as slow as simple tabulation. No other hashing scheme of comparable speed offers similar Chernoff-style concentration bounds.Comment: 54 pages, 3 figures. An extended abstract appeared at the 52nd Annual ACM Symposium on Theory of Computing (STOC20

    Network-aware design-space exploration of a power-efficient embedded application

    Get PDF
    The paper presents the design and multi-parameter optimization of a networked embedded application for the health-care domain. Several hardware, software, and application parameters, such as clock frequency, sensor sampling rate, data packet rate, are tuned at design- and run-time according to application specifications and operating conditions to optimize hardware requirements, packet loss, power consumption. Experimental results show that further power efficiency can be achieved by considering also communication aspects during design space exploratio

    Carrier-envelope phase dependence in single-cycle laser pulse propagation with the inclusion of counter-rotating terms

    Full text link
    We focus on the propagation properties of a single-cycle laser pulse through a two-level medium by numerically solving the full-wave Maxwell-Bloch equations. The counter-rotating terms in the spontaneous emission damping are included such that the equations of motion are slightly different from the conventional Bloch equations. The counter-rotating terms can considerably suppress the broadening of the pulse envelope and the decrease of the group velocity rooted from dispersion. Furthermore, for incident single-cycle pulses with envelope area 4π\pi, the time-delay of the generated soliton pulse from the main pulse depends crucially on the carrier-envelope phase of the incident pulse. This can be utilized to determine the carrier-envelope phase of the single-cycle laser pulse.Comment: 6 pages, 5 figure

    Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels

    Get PDF
    Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved. Open Access funded by Wellcome TrustNon peer reviewedPublisher PD

    Measuring photon-photon interactions via photon detection

    Full text link
    The strong non-linearity plays a significant role in physics, particularly, in designing novel quantum sources of light and matter as well as in quantum chemistry or quantum biology. In simple systems, the photon-photon interaction can be determined analytically. However, it becomes challenging to obtain it for more compex systems. Therefore, we show here how to measure strong non-linearities via allowing the sample to interact with a weakly pumped quantized leaking optical mode. We found that the detected mean-photon number versus pump-field frequency shows several peaks. Interestingly, the interval between neighbour peaks equals the photon-photon interaction potential. Furthermore, the system exhibits sub-Poissonian photon statistics, entanglement and photon switching with less than one photon. Finally, we connect our study with existing related experiments.Comment: 4 pages, 3 figure

    Asymptotic Stability for a Class of Metriplectic Systems

    Full text link
    Using the framework of metriplectic systems on Rn\R^n we will describe a constructive geometric method to add a dissipation term to a Hamilton-Poisson system such that any solution starting in a neighborhood of a nonlinear stable equilibrium converges towards a certain invariant set. The dissipation term depends only on the Hamiltonian function and the Casimir functions

    Magnetic microscopy of topologically protected homochiral domain walls in an ultrathin perpendicularly magnetized Co film

    Get PDF
    Next-generation concepts for solid-state memory devices are based on current-driven domain wall propagation, where the wall velocity governs the device performance. It has been shown that the domain wall velocity and the direction of travel is controlled by the nature of the wall and its chirality. This chirality is attributed to effects emerging from the lack of inversion symmetry at the interface between a ferromagnet and a heavy metal, leading to an interfacial Dzyaloshinskii-Moriya interaction that can control the shape and chirality of the magnetic domain wall. Here we present direct imaging of domain walls in Pt/Co/AlOx_x films using Lorentz transmission electron microscopy, demonstrating the presence of homochiral, and thus topologically protected, N\'{e}el walls. Such domain walls are good candidates for dense data storage, bringing the bit size down close to the limit of the domain wall width

    Nonholonomic Ricci Flows and Running Cosmological Constant: I. 4D Taub-NUT Metrics

    Get PDF
    In this work we construct and analyze exact solutions describing Ricci flows and nonholonomic deformations of four dimensional (4D) Taub-NUT spacetimes. It is outlined a new geometric techniques of constructing Ricci flow solutions. Some conceptual issues on spacetimes provided with generic off-diagonal metrics and associated nonlinear connection structures are analyzed. The limit from gravity/Ricci flow models with nontrivial torsion to configurations with the Levi-Civita connection is allowed in some specific physical circumstances by constraining the class of integral varieties for the Einstein and Ricci flow equations.Comment: latex2e, final variant to be published in IJMP
    corecore