4,095 research outputs found
Hydrogenation of CO on a silica surface: an embedded cluster approach
The sequential addition of H atoms to CO adsorbed on a siliceous edingtonite surface is studied with an embedded cluster approach, using density functional theory for the quantum mechanical (QM) cluster and a molecular force field for the molecular mechanical (MM) cluster. With this setup, calculated QM/MM adsorption energies are in agreement with previous calculations employing periodic boundary conditions. The catalytic effect of the siliceous edingtonite (100) surface on CO hydrogenation is assessed because of its relevance to astrochemistry. While adsorption of CO on a silanol group on the hydroxylated surface did not reduce the activation energy for the reaction with a H atom, a negatively charged defect on the surface is found to reduce the gas phase barriers for the hydrogenation of both CO and H2C = O. The embedded cluster approach is shown to be a useful and flexible tool for studying reactions on (semi-)ionic surfaces and specific defects thereon. The methodology presented here could easily be applied to study reactions on silica surfaces that are of relevance to other scientific areas, such as biotoxicity of silica dust and geochemistry
An imaging and spectroscopic study of the very metal-deficient blue compact dwarf galaxy Tol 1214--277
We present a spectrophotometric study based on VLT/FORS I observations of one
of the most metal-deficient blue compact dwarf (BCD) galaxies known, Tol
1214-277 (Z ~ Zsun/25). The data show that roughly half of the total luminosity
of the BCD originates from a bright and compact starburst region located at the
northeastern tip of a faint dwarf galaxy with cometary appearance. The
starburst has ignited less than 4 Myr ago and its emission is powered by
several thousands O7V stars and ~ 170 late-type nitrogen Wolf-Rayet stars
located within a compact region with < 500 pc in diameter. For the first time
in a BCD, a relatively strong [Fe V] 4227 emission line is seen which together
with intense He II 4686 emission indicates the presence of a very hard
radiation field in Tol 1214-277. We argue that this extraordinarily hard
radiation originates from both Wolf--Rayet stars and radiative shocks in the
starburst region. The structural properties of the low-surface-brightness (LSB)
component underlying the starburst have been investigated by means of surface
photometry down to 28 B mag/sq.arcsec. We find that, for a surface brightness
level fainter than ~ 24.5 B mag/sq.arcsec, an exponential fitting law provides
an adequate approximation to its radial intensity distribution. The broad-band
colors in the outskirts of the LSB component of Tol 1214-277 are nearly
constant and are consistent with an age below one Gyr. This conclusion is
supported by the comparison of the observed spectral energy distribution (SED)
of the LSB host with theoretical SEDs.Comment: 17 pages, 11 Postscript figures, uses emulateapj.sty, to appear in
Astronomical Journa
Water adsorption on amorphous silica surfaces: A Car-Parrinello simulation study
A combination of classical molecular dynamics (MD) and ab initio
Car-Parrinello molecular dynamics (CPMD) simulations is used to investigate the
adsorption of water on a free amorphous silica surface. From the classical MD
SiO_2 configurations with a free surface are generated which are then used as
starting configurations for the CPMD.We study the reaction of a water molecule
with a two-membered ring at the temperature T=300K. We show that the result of
this reaction is the formation of two silanol groups on the surface. The
activation energy of the reaction is estimated and it is shown that the
reaction is exothermic.Comment: 12 pages, 6 figures, to be published in J. Phys.: Condens. Matte
Maximum Coronal Mass Ejection Speed as an Indicator of Solar and Geomagnetic Activities
We investigate the relationship between the monthly averaged maximal speeds
of coronal mass ejections (CMEs), international sunspot number (ISSN), and the
geomagnetic Dst and Ap indices covering the 1996-2008 time interval (solar
cycle 23). Our new findings are as follows. (1) There is a noteworthy
relationship between monthly averaged maximum CME speeds and sunspot numbers,
Ap and Dst indices. Various peculiarities in the monthly Dst index are
correlated better with the fine structures in the CME speed profile than that
in the ISSN data. (2) Unlike the sunspot numbers, the CME speed index does not
exhibit a double peak maximum. Instead, the CME speed profile peaks during the
declining phase of solar cycle 23. Similar to the Ap index, both CME speed and
the Dst indices lag behind the sunspot numbers by several months. (3) The CME
number shows a double peak similar to that seen in the sunspot numbers. The CME
occurrence rate remained very high even near the minimum of the solar cycle 23,
when both the sunspot number and the CME average maximum speed were reaching
their minimum values. (4) A well-defined peak of the Ap index between 2002 May
and 2004 August was co-temporal with the excess of the mid-latitude coronal
holes during solar cycle 23. The above findings suggest that the CME speed
index may be a useful indicator of both solar and geomagnetic activities. It
may have advantages over the sunspot numbers, because it better reflects the
intensity of Earth-directed solar eruptions
Greenland ice core âsignalâ characteristics: An expanded view of climate change
The last millenium of Earth history is of particular interest because it documents the environmental complexities of both natural variability and anthropogenic activity. We have analyzed the major ions contained in the Greenland Ice Sheet Project 2 (GISP 2) ice core from the present to âŒ674 A.D. to yield an environmental reconstruction for this period that includes a description of nitrogen and sulfur cycling, volcanic emissions, sea salt and terrestrial influences. We have adapted and extended mathematical procedures for extracting sporadic (e.g., volcanic) events, secular trends, and periodicities found in the data sets. Finally, by not assuming that periodic components (signals) were âstationaryâ and by utilizing evolutionary spectral analysis, we were able to reveal periodic processes in the climate system which change in frequency, âturn on,â and âturn offâ with other climate transitions such as\u27that between the little ice age and the medieval warm period
A VME-based LabVIEW system for the magnetic measurements of the LHC prototype dipoles
A magnetic measurement system based on a set of rotating harmonic coils has been integrated together with the coil positioning and rotation control, the associated data acquisition and the power supply control using a PC. This PC is a mono-board VME module with its networking connection, local hard disk and serial interfaces. The PC communicates with its peripheral devices (the controller embedded in the power converter, the coil positioning PLC and the coil rotation hardware) via RS-232C lines and acquires data using VME modules: in-house designed voltage integrators for the magnetic measurement and a commercial ADC for real-time measurements. The software is a LabVIEW application: it handles and synchronizes the peripheral devices of the measurement system and the real-time tasks related to the data acquisition; it constitutes a man-machine interface for the operator and also directly stores field maps onto a file server. The system is operational on the test benches and has proved reliable, user-friendly and performed as expected.
A Mole for Warm Magnetic and Optical Measurements of LHC Dipoles
A new rotating coil probe (a mole) has been developed for the simultaneous measurement of the magnetic field and magnetic axis of warm superconducting LHC dipoles and associated corrector windings. The mole houses a radial rotating coil and travels inside the magnet aperture by means of an externally driven two-way traction belt. The coil is rotated by an on-board piezo motor, being tested in view of future devices for cold measurements as the only type of motor compatible with strong magnetic fields. A virtual light spot is generated in the coil center by a LED source. The position of this light spot is measured from the outside by a system including a telescope, a CCD camera and a DSP. Jigs on reference granite tables are used to transfer the optical measurements to the magnet fiducials. We describe here the main characteristics and performance of the mol
Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria
Software is a fundamental pillar of modern scientiic research, not only in computer science, but actually across all elds and disciplines. However, there is a lack of adequate means to cite and reference software, for many reasons. An obvious rst reason is software authorship, which can range from a single developer to a whole team, and can even vary in time. The panorama is even more complex than that, because many roles can be involved in software development: software architect, coder, debugger, tester, team manager, and so on. Arguably, the researchers who have invented the key algorithms underlying the software can also claim a part of the authorship. And there are many other reasons that make this issue complex. We provide in this paper a contribution to the ongoing eeorts to develop proper guidelines and recommendations for software citation, building upon the internal experience of Inria, the French research institute for digital sciences. As a central contribution, we make three key recommendations. (1) We propose a richer taxonomy for software contributions with a qualitative scale. (2) We claim that it is essential to put the human at the heart of the evaluation. And (3) we propose to distinguish citation from reference
- âŠ