163 research outputs found

    Patterns of recurrence following definitive chemoradiation for patients with proximal esophageal cancer

    Get PDF
    Introduction: The aim of this retrospective study was to determine the patterns of recurrence and overall survival (OS) in patients achieving clinical complete response after treatment with definitive chemoradiation (CRT) for proximal esophageal cancer. Materials and methods: Patients with proximal esophageal cancer treated with CRT between 2004 and 2014 in 11 centers in the Netherlands were included. OS and progression-free survival (PFS) were calculated using the Kaplan-Meier method. Cumulative incidence of first recurrence (locoregional or distant) and locoregional recurrence (LRR) were assessed using competing risk analyses. Results: In 197 of the 200 identified patients, response was evaluated, 133 (68%) showed a complete response. In complete responders, median OS, three-year OS, and PFS were 45.0 months (95% CI 34.8-61.5 months), 58% (95% CI 48-66), and 49% (95% CI 40-57), respectively. Three- and five-year risk of recurrence were respectively 40% (95% CI 31-48), and 45% (95% CI 36-54). Three- and five-year risk of LRR were 26% (95% CI 19-33), and 30% (95% CI 22-38). Eight of 32 patients with an isolated LRR underwent salvage surgery, with a median OS of 32.0 months (95% CI 6.8-not reached). Conclusion: In patients with a complete response after definitive CRT for proximal esophageal cancer, most recurrences were locoregional and developed within the first three years after CRT. These findings suggest to shorten locoregional follow-up from five to three years. (C) 2021 The Authors. Published by Elsevier Ltd

    The interaction between AMPK beta 2 and the PP1-targeting subunit R6 is dynamically regulated by intracellular glycogen content

    Get PDF
    11 páginas, 7 figuras.AMP-activated protein kinase (AMPK) is a metabolic stress-sensing kinase. We previously showed that glucose deprivation induces autophosphorylation of AMPKβ at threonine-148 (Thr-148), which prevents the binding of AMPK to glycogen. Furthermore, in MIN6 cells, AMPKβ1 binds to R6 (PPP1R3D), a glycogen-targeting subunit of protein phosphatase 1 (PP1), thereby regulating the glucose-induced inactivation of AMPK. Here, we further investigated the interaction of R6 with AMPKβ and the possible dependency on Thr-148 phosphorylation status. Yeast two-hybrid analyses and co-immunoprecipitation of the overexpressed proteins in HEK293T cells revealed that both AMPKβ1 and β2 wild-type (WT) isoforms bind to R6. The AMPKβ/R6 interaction was stronger with the muscle-specific β2-WT and required association with the substrate-binding motif of R6. When HEK293T cells or C2C12 myotubes were cultured in high-glucose medium, AMPKβ2-WT and R6 weakly interacted. In contrast, glycogen depletion significantly enhanced this protein interaction. Mutation of AMPKβ2 Thr-148 prevented the interaction with R6 irrespective of the intracellular glycogen content. Treatment with the AMPK activator oligomycin enhanced AMPKβ2/R6 interaction in conjunction with increased Thr-148 phosphorylation in cells grown in low glucose medium. These data are in accordance with R6 binding directly to AMPKβ2 when both proteins detach from the diminishing glycogen particle, which is simultaneous to increased AMPKβ2 Thr-148 autophosphorylation. Such model points to a possible control of AMPK by PP1-R6 upon glycogen depletion in muscle.DN is recipient of a VIDI-Innovational Research Grant from the Netherlands Organization of Scientific Research (NWO-ALW Grant no. 864.10.007). This work has further been supported by grants from the Spanish Ministry of Education and Science SAF2014-54604-C3-1-R and a grant from Generalitat Valenciana (PrometeoII/2014/029) to PS.Peer reviewe

    p38 MAPK-Mediated Bmi-1 Down-Regulation and Defective Proliferation in ATM-Deficient Neural Stem Cells Can Be Restored by Akt Activation

    Get PDF
    A-T (ataxia telangiectasia) is a genetic disease caused by a mutation in the Atm (A-T mutated) gene that leads to neurodegeneration. Despite an increase in the numbers of studies in this area in recent years, the mechanisms underlying neurodegeneration in human A-T are still poorly understood. Previous studies demonstrated that neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm-/- mouse brains show defective self-renewal and proliferation, which is accompanied by activation of chronic p38 mitogen-activated protein kinase (MAPK) and a lower level of the polycomb protein Bmi-1. However, the mechanism underlying Bmi-1 down-regulation and its relevance to defective proliferation in Atm-/- NSCs remained unclear. Here, we show that over-expression of Bmi-1 increases self-renewal and proliferation of Atm-/- NSCs to normal, indicating that defective proliferation in Atm-/- NSCs is a consequence of down-regulation of Bmi-1. We also demonstrate that epidermal growth factor (EGF)-induced Akt phosphorylation renders Bmi-1 resistant to the proteasomal degradation, leading to its stabilization and accumulation in the nucleus. However, inhibition of the Akt-dependent Bmi-1 stabilizing process by p38 MAPK signaling reduces the levels of Bmi-1. Treatment of the Atm-/- NSCs with a specific p38 MAPK inhibitor SB203580 extended Bmi-1 posttranscriptional turnover and H2A ubiquitination in Atm-/- NSCs. Our observations demonstrate the molecular basis underlying the impairment of self-renewal and proliferation in Atm-/- NSCs through the p38 MAPK-Akt-Bmi-1-p21 signaling pathway

    High-confidence glycosome proteome for procyclic form <em>Trypanosoma brucei</em> by epitope-tag organelle enrichment and SILAC proteomics

    Get PDF
    The glycosome of the pathogenic African trypanosome Trypanosoma brucei is a specialized peroxisome that contains most of the enzymes of glycolysis and several other metabolic and catabolic pathways. The contents and transporters of this membrane-bounded organelle are of considerable interest as potential drug targets. Here we use epitope tagging, magnetic bead enrichment, and SILAC quantitative proteomics to determine a high-confidence glycosome proteome for the procyclic life cycle stage of the parasite using isotope ratios to discriminate glycosomal from mitochondrial and other contaminating proteins. The data confirm the presence of several previously demonstrated and suggested pathways in the organelle and identify previously unanticipated activities, such as protein phosphatases. The implications of the findings are discussed

    Rolled-Up Nanotech: Illumination-Controlled Hydrofluoric Acid Etching of AlAs Sacrificial Layers

    Get PDF
    <p>Abstract</p> <p>The effect of illumination on the hydrofluoric acid etching of AlAs sacrificial layers with systematically varied thicknesses in order to release and roll up InGaAs/GaAs bilayers was studied. For thicknesses of AlAs below 10 nm, there were two etching regimes for the area under illumination: one at low illumination intensities, in which the etching and releasing proceeds as expected and one at higher intensities in which the etching and any releasing are completely suppressed. The &#8220;etch suppression&#8221; area is well defined by the illumination spot, a feature that can be used to create heterogeneously etched regions with a high degree of control, shown here on patterned samples. Together with the studied self-limitation effect, the technique offers a way to determine the position of rolled-up micro- and nanotubes independently from the predefined lithographic pattern.</p

    Preoperative image-guided identification of response to neoadjuvant chemoradiotherapy in esophageal cancer (PRIDE):a multicenter observational study

    Get PDF
    BACKGROUND: Nearly one third of patients undergoing neoadjuvant chemoradiotherapy (nCRT) for locally advanced esophageal cancer have a pathologic complete response (pCR) of the primary tumor upon histopathological evaluation of the resection specimen. The primary aim of this study is to develop a model that predicts the probability of pCR to nCRT in esophageal cancer, based on diffusion-weighted magnetic resonance imaging (DW-MRI), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and (18)F-fluorodeoxyglucose positron emission tomography with computed tomography ((18)F-FDG PET-CT). Accurate response prediction could lead to a patient-tailored approach with omission of surgery in the future in case of predicted pCR or additional neoadjuvant treatment in case of non-pCR. METHODS: The PRIDE study is a prospective, single arm, observational multicenter study designed to develop a multimodal prediction model for histopathological response to nCRT for esophageal cancer. A total of 200 patients with locally advanced esophageal cancer - of which at least 130 patients with adenocarcinoma and at least 61 patients with squamous cell carcinoma - scheduled to receive nCRT followed by esophagectomy will be included. The primary modalities to be incorporated in the prediction model are quantitative parameters derived from MRI and (18)F-FDG PET-CT scans, which will be acquired at fixed intervals before, during and after nCRT. Secondary modalities include blood samples for analysis of the presence of circulating tumor DNA (ctDNA) at 3 time-points (before, during and after nCRT), and an endoscopy with (random) bite-on-bite biopsies of the primary tumor site and other suspected lesions in the esophagus as well as an endoscopic ultrasonography (EUS) with fine needle aspiration of suspected lymph nodes after finishing nCRT. The main study endpoint is the performance of the model for pCR prediction. Secondary endpoints include progression-free and overall survival. DISCUSSION: If the multimodal PRIDE concept provides high predictive performance for pCR, the results of this study will play an important role in accurate identification of esophageal cancer patients with a pCR to nCRT. These patients might benefit from a patient-tailored approach with omission of surgery in the future. Vice versa, patients with non-pCR might benefit from additional neoadjuvant treatment, or ineffective therapy could be stopped. TRIAL REGISTRATION: The article reports on a health care intervention on human participants and was prospectively registered on March 22, 2018 under ClinicalTrials.gov Identifier: NCT03474341

    Modifying Threat-related Interpretive Bias in Adolescents

    Get PDF
    Socially anxious feelings sharply increase during adolescence and such feelings have been associated with interpretive biases. Studies in adults have shown that interpretive biases can be modified using Cognitive Bias Modification procedures (CBM-I) and subsequent effects on anxiety have been observed. The current study was designed to examine whether the CBM-I procedure has similar effects in adolescents. Unselected adolescents were randomly allocated to either a positive interpretation training (n = 88) or a placebo-control condition (n = 82). Results revealed that the training was successful in modifying interpretations and effects generalized to a new task. The interpretive bias effects were most pronounced in individuals with a threat-related interpretive bias at pre-test. No effects on state anxiety were observed. The current findings are promising with regard to applying bias modification procedures to adolescents, while further research is warranted regarding emotional effects

    Protistan Diversity in the Arctic: A Case of Paleoclimate Shaping Modern Biodiversity?

    Get PDF
    The impact of climate on biodiversity is indisputable. Climate changes over geological time must have significantly influenced the evolution of biodiversity, ultimately leading to its present pattern. Here we consider the paleoclimate data record, inferring that present-day hot and cold environments should contain, respectively, the largest and the smallest diversity of ancestral lineages of microbial eukaryotes.We investigate this hypothesis by analyzing an original dataset of 18S rRNA gene sequences from Western Greenland in the Arctic, and data from the existing literature on 18S rRNA gene diversity in hydrothermal vent, temperate sediments, and anoxic water column communities. Unexpectedly, the community from the cold environment emerged as one of the richest observed to date in protistan species, and most diverse in ancestral lineages.This pattern is consistent with natural selection sweeps on aerobic non-psychrophilic microbial eukaryotes repeatedly caused by low temperatures and global anoxia of snowball Earth conditions. It implies that cold refuges persisted through the periods of greenhouse conditions, which agrees with some, although not all, current views on the extent of the past global cooling and warming events. We therefore identify cold environments as promising targets for microbial discovery

    Evidence for Loss of a Partial Flagellar Glycolytic Pathway during Trypanosomatid Evolution

    Get PDF
    Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma brucei flagellar proteins resembling glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK): we show the latter associates with the axoneme and the former is a novel paraflagellar rod component. The paraflagellar rod is an essential extra-axonemal structure in trypanosomes and related protists, providing a platform into which metabolic activities can be built. Yet, bioinformatics interrogation and structural modelling indicate neither the trypanosome PGK-like nor the GAPDH-like protein is catalytically active. Orthologs are present in a free-living ancestor of the trypanosomatids, Bodo saltans: the PGK-like protein from B. saltans also lacks key catalytic residues, but its GAPDH-like protein is predicted to be catalytically competent. We discuss the likelihood that the trypanosome GAPDH-like and PGK-like proteins constitute molecular evidence for evolutionary loss of a flagellar glycolytic pathway, either as a consequence of niche adaptation or the re-localization of glycolytic enzymes to peroxisomes and the extensive changes to glycolytic flux regulation that accompanied this re-localization. Evidence indicating loss of localized ATP provision via glycolytic enzymes therefore provides a novel contribution to an emerging theme of hidden diversity with respect to compartmentalization of the ubiquitous glycolytic pathway in eukaryotes. A possibility that trypanosome GAPDH-like protein additionally represents a degenerate example of a moonlighting protein is also discussed
    • …
    corecore