53 research outputs found

    Attenuation of Acute Rejection in a Rat Liver Transplantation Model by a Liver-Targeted Dextran Prodrug of Methylprednisolone

    Get PDF
    The use of methylprednisolone (MP) and other corticosteroids for the treatment of acute liver allograft rejection is associated with severe toxicities in non-target tissues. Therefore, selective delivery of MP to the liver may improve its efficacy and alleviate its side effects. We investigated the effects of a novel liver-targeted dextran prodrug of MP (DMP) in an orthotopic rat liver transplantation (OLT) model

    Targeted Metabolomic Approach for Assessing Human Synthetic Cannabinoid Exposure and Pharmacology

    No full text
    Designer synthetic cannabinoids like JWH-018 and AM2201 have unique clinical toxicity. Cytochrome-P450-mediated metabolism of each leads to the generation of pharmacologically active (ω)- and (ω-1)-monohydroxyl metabolites that retain high affinity for cannabinoid type-1 receptors, exhibit Δ<sup>9</sup>-THC-like effects in rodents, and are conjugated with glucuronic acid prior to excretion in human urine. Previous studies have not measured the contribution of the specific (ω-1)-monohydroxyl enantiomers in human metabolism and toxicity. This study uses a chiral liquid chromatography–tandem mass spectroscopy approach (LC–MS/MS) to quantify each specific enantiomer and other nonchiral, human metabolites of JWH-018 and AM2201 in human urine. The accuracy (average % RE = 18.6) and reproducibility (average CV = 15.8%) of the method resulted in low-level quantification (average LLQ = 0.99 ng/mL) of each metabolite. Comparisons with a previously validated nonchiral method showed strong correlation between the two approaches (average <i>r</i><sup>2</sup> = 0.89). Pilot data from human urine samples demonstrate enantiospecific excretion patterns. The (<i>S</i>)-isomer of the JWH-018-(ω-1)-monohydroxyl metabolite was predominantly excreted (>87%) in human urine as the glucuronic acid conjugate, whereas the relative abundance of the corresponding AM2201-(ω-1)-metabolite was low (<5%) and did not demonstrate enantiospecificity (approximate 50:50 ratio of each enantiomer). The new chiral method provides a comprehensive, targeted metabolomic approach for studying the human metabolism of JWH-018 and AM2201. Preliminary evaluations of specific enantiomeric contributions support the use of this approach in future studies designed to understand the pharmacokinetic properties of JWH-018 and/or AM2201
    • …
    corecore