9 research outputs found

    Get involved! The IOI workshop 2010, its goals and results

    No full text
    In May 2010, the third IOI workshop took place in Schloss Dagstuhl, Germany. It was motivated by the discussions held at and after the panel session of 2009's IOI conference in Plovdiv. There, discussions focussed on communication and collaboration among the IOI community, as well as communication of the IOI competition to outsiders. At the workshop, members of the IOI community met to develop a first version of an IOI Wiki as a tool for communication and collaboration, and devised suggestions on how to visualize IOI-style contests to make them more accessible to the outside world

    Using Deep Learning to Extrapolate Protein Expression Measurements.

    No full text
    Mass spectrometry (MS)-based quantitative proteomics experiments typically assay a subset of up to 60% of the ≈20 000 human protein coding genes. Computational methods for imputing the missing values using RNA expression data usually allow only for imputations of proteins measured in at least some of the samples. In silico methods for comprehensively estimating abundances across all proteins are still missing. Here, a novel method is proposed using deep learning to extrapolate the observed protein expression values in label-free MS experiments to all proteins, leveraging gene functional annotations and RNA measurements as key predictive attributes. This method is tested on four datasets, including human cell lines and human and mouse tissues. This method predicts the protein expression values with average R2 scores between 0.46 and 0.54, which is significantly better than predictions based on correlations using the RNA expression data alone. Moreover, it is demonstrated that the derived models can be "transferred" across experiments and species. For instance, the model derived from human tissues gave a R2=0.51 when applied to mouse tissue data. It is concluded that protein abundances generated in label-free MS experiments can be computationally predicted using functional annotated attributes and can be used to highlight aberrant protein abundance values

    Using Deep Learning to Extrapolate Protein Expression Measurements

    No full text
    Mass spectrometry (MS)-based quantitative proteomics experiments typically assay a subset of up to 60% of the ≈20 000 human protein coding genes. Computational methods for imputing the missing values using RNA expression data usually allow only for imputations of proteins measured in at least some of the samples. In silico methods for comprehensively estimating abundances across all proteins are still missing. Here, a novel method is proposed using deep learning to extrapolate the observed protein expression values in label-free MS experiments to all proteins, leveraging gene functional annotations and RNA measurements as key predictive attributes. This method is tested on four datasets, including human cell lines and human and mouse tissues. This method predicts the protein expression values with average R2 scores between 0.46 and 0.54, which is significantly better than predictions based on correlations using the RNA expression data alone. Moreover, it is demonstrated that the derived models can be "transferred" across experiments and species. For instance, the model derived from human tissues gave a R2=0.51 when applied to mouse tissue data. It is concluded that protein abundances generated in label-free MS experiments can be computationally predicted using functional annotated attributes and can be used to highlight aberrant protein abundance values

    New national and regional bryophyte records, 53

    No full text
    corecore