116 research outputs found
Effect of pressure on synthesis of Pr-doped zirconia powders produced by microwave-driven hydrothermal reaction
A high-pressure microwave reactor was used to study the hydrothermal synthesis of zirconia powders doped with 1 mol % Pr.The synthesis was performed in the pressure range from 2 to 8MPa corresponding to a temperature range from 215◦C to 305◦C.This technology permits a synthesis of nanopowders in short time not limited by thermal inertia of the vessel. Microwave heatingpermits to avoid contact of the reactants with heating elements, and is thus particularly well suited for synthesis of dopednanopowders in high purity conditions. A mixture of ZrO2 particles with tetragonal and monoclinic crystalline phases, about15nm in size, was obtained. The p/T threshold of about 5-6MPa/265–280◦C was necessary to obtain good quality of zirconiapowder. A new method for quantitative description of grain-size distribution was applied, which is based on analysis of the finestructure of the X-ray diffraction line profiles. It permitted to follow separately the effect of synthesis conditions on the grain-size distribution of the monoclinic and tetragonal phases
Effect of Pressure on Synthesis of Pr-Doped Zirconia Powders Produced by Microwave-Driven Hydrothermal Reaction
A high-pressure microwave reactor was used to study the hydrothermal synthesis of
zirconia powders doped with 1 mol % Pr. The synthesis was performed in the pressure range
from 2 to 8 MPa corresponding to a temperature range from 215C∘ to 305C∘. This technology
permits a synthesis of nanopowders in short time not limited by thermal inertia of the vessel.
Microwave heating permits to avoid contact of the reactants with heating elements, and is thus
particularly well suited for synthesis of doped nanopowders in high purity conditions.
A mixture of ZrO2 particles with tetragonal and monoclinic crystalline phases, about 15 nm in size, was obtained.
The p/T threshold of about 5-6 MPa/265–280C∘ was necessary to obtain good quality of
zirconia powder. A new method for quantitative description of grain-size distribution was applied, which is
based on analysis of the fine structure of the X-ray diffraction line profiles. It permitted to
follow separately the effect of synthesis conditions on the grain-size distribution of the
monoclinic and tetragonal phases
Electrical properties of ZrO₂ in nano- and polycrystalline states at high pressure
We present the results of the research work devoted to the problem: how the crystallites influence the electrical properties of stabilized zirconia at pressures of 22−50 GPa and in the temperature range of 77−450 K. The measurements were conducted in the highpressure chamber under direct current on nanocrystalline powders of ZrO₂ stabilized by Pr (0.5%) and on compact powder samples of «partially stabilized» ZrO₂ including 5% Y₃P₃. The nanocrystallite size equals 10, 12 and 56 nm. The change of electronic properties of stabilized zirconia at 31.5–37.5 GPa, 40–44 GPa and 45.5–48.5 GPa in nano- and polycrystalline states has been discovered. It gives us a possibility to verify the phase diagram of ZrO₂ at those intervals of pressure. Besides, it has been revealed that stabilization as nanocrystallinity leads to appearance of additional mechanisms of conductivity in ZrO₂
A versatile method for the preparation of conjugates of peptides with DNA/PNA/analog by employing chemo-selective click reaction in water
The specific 1,3 dipolar Hüisgen cycloaddition reaction known as ‘click-reaction’ between azide and alkyne groups is employed for the synthesis of peptide–oligonucleotide conjugates. The peptide nucleic acids (PNA)/DNA and peptides may be appended either by azide or alkyne groups. The cycloaddition reaction between the azide and alkyne appended substrates allows the synthesis of the desired conjugates in high purity and yields irrespective of the sequence and functional groups on either of the two substrates. The versatile approach could also be employed to generate the conjugates of peptides with thioacetamido nucleic acid (TANA) analog. The click reaction is catalyzed by Cu (I) in either water or in organic medium. In water, ∼3-fold excess of the peptide-alkyne/azide drives the reaction to completion in 2 h with no side products
The emerging role of MIR-146A in the control of hematopoiesis, immune function and cancer
MicroRNA (miRs) represent a class of small non-coding regulatory RNAs playing a major role in the control of gene expression by repressing protein synthesis at the post-transcriptional level. Studies carried out during the last years have shown that some miRNAs plays a key role in the control of normal and malignant hgematopoiesis. In this review we focus on recent progress in analyzing the functional role of miR-146a in the control of normal and malignant hematopoiesis. On the other hand, this miRNA has shown to impact in the control of innate immune responses. Finally, many recent studies indicate a deregulation of miR-146 in many solid tumors and gene knockout studies indicate a role for this miRNA as a tumor suppressor
Widespread Hypomethylation Occurs Early and Synergizes with Gene Amplification during Esophageal Carcinogenesis
Although a combination of genomic and epigenetic alterations are implicated in the multistep transformation of normal squamous esophageal epithelium to Barrett esophagus, dysplasia, and adenocarcinoma, the combinatorial effect of these changes is unknown. By integrating genome-wide DNA methylation, copy number, and transcriptomic datasets obtained from endoscopic biopsies of neoplastic progression within the same individual, we are uniquely able to define the molecular events associated progression of Barrett esophagus. We find that the previously reported global hypomethylation phenomenon in cancer has its origins at the earliest stages of epithelial carcinogenesis. Promoter hypomethylation synergizes with gene amplification and leads to significant upregulation of a chr4q21 chemokine cluster and other transcripts during Barrett neoplasia. In contrast, gene-specific hypermethylation is observed at a restricted number of loci and, in combination with hemi-allelic deletions, leads to downregulatation of selected transcripts during multistep progression. We also observe that epigenetic regulation during epithelial carcinogenesis is not restricted to traditionally defined “CpG islands,” but may also occur through a mechanism of differential methylation outside of these regions. Finally, validation of novel upregulated targets (CXCL1 and 3, GATA6, and DMBT1) in a larger independent panel of samples confirms the utility of integrative analysis in cancer biomarker discovery
Excision of HIV-1 Proviral DNA by Recombinant Cell Permeable Tre-Recombinase
Over the previous years, comprehensive studies on antiretroviral drugs resulted in the successful introduction of highly active antiretroviral therapy (HAART) into clinical practice for treatment of HIV/AIDS. However, there is still need for new therapeutic approaches, since HAART cannot eradicate HIV-1 from the infected organism and, unfortunately, can be associated with long-term toxicity and the development of drug resistance. In contrast, novel gene therapy strategies may have the potential to reverse the infection by eradicating HIV-1. For example, expression of long terminal repeat (LTR)-specific recombinase (Tre-recombinase) has been shown to result in chromosomal excision of proviral DNA and, in consequence, in the eradication of HIV-1 from infected cell cultures. However, the delivery of Tre-recombinase currently depends on the genetic manipulation of target cells, a process that is complicating such therapeutic approaches and, thus, might be undesirable in a clinical setting. In this report we demonstrate that E.coli expressed Tre-recombinases, tagged either with the protein transduction domain (PTD) from the HIV-1 Tat trans-activator or the translocation motif (TLM) of the Hepatitis B virus PreS2 protein, were able to translocate efficiently into cells and showed significant recombination activity on HIV-1 LTR sequences. Tre activity was observed using episomal and stable integrated reporter constructs in transfected HeLa cells. Furthermore, the TLM-tagged enzyme was able to excise the full-length proviral DNA from chromosomal integration sites of HIV-1-infected HeLa and CEM-SS cells. The presented data confirm Tre-recombinase activity on integrated HIV-1 and provide the basis for the non-genetic transient application of engineered recombinases, which may be a valuable component of future HIV eradication strategies
Non-protein coding RNA biomarkers and differential expression in cancers: a review
<p>Abstract</p> <p>Background</p> <p>In these years a huge number of human transcripts has been found that do not code for proteins, named non-protein coding RNAs. In most cases, small (miRNAs, snoRNAs) and long RNAs (antisense RNA, dsRNA, and long RNA species) have many roles, functioning as regulators of other mRNAs, at transcriptional and post-transcriptional level, and controlling protein ubiquitination and degradation. Various species of npcRNAs have been found differentially expressed in different types of cancer. This review discusses the published data and new results on the expression of a subset of npcRNAs.</p> <p>Conclusion</p> <p>These results underscore the complexity of the RNA world and provide further evidence on the involvement of functional RNAs in cancer cell growth control.</p
- …