119 research outputs found

    Equipment review: Mechanical effects of heat-moisture exchangers in ventilated patients

    Get PDF
    Although they represent a valuable alternative to heated humidifiers, artificial noses have unfavourable mechanical effects. Most important of these is the increase in dead space, with consequent increase in the ventilation requirement. Also, artificial noses increase the inspiratory and expiratory resistance of the apparatus, and may mildly increase intrinsic positive end-expiratory pressure. The significance of these effects depends on the design and function of the artificial nose. The pure humidifying function results in just a moderate increase in dead space and resistance of the apparatus, whereas the combination of a filtering function with the humidifying function may critically increase the volume and the resistance of the artificial nose, especially when a mechanical filter is used. The increase in the inspiratory load of ventilation that is imposed by artificial noses, which is particularly significant for the combined heat-moisture exchanger filters, should be compensated for by an increase either in ventilator output or in patient's work of breathing. Although both approaches can be tolerated by most patients, some exceptions should be considered. The increased pressure and volume that are required to compensate for the artificial nose application increase the risk of barotrauma and volutrauma in those patients who have the most severe alterations in respiratory mechanics. Moreover, those patients who have very limited respiratory reserve may not be able to compensate for the inspiratory work imposed by an artificial nose. When we choose an artificial nose, we should take into account the volume and resistance of the available devices. We should also consider the mechanical effects of the artificial noses when setting mechanical ventilation and when assessing a patient's ability to breathe spontaneously

    Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces

    Full text link
    We study the heat transfer between two parallel metallic semi-infinite media with a gap in the nanometer-scale range. We show that the near-field radiative heat flux saturates at distances smaller than the metal skin depth when using a local dielectric constant and investigate the origin of this effect. The effect of non-local corrections is analysed using the Lindhard-Mermin and Boltzmann-Mermin models. We find that local and non-local models yield the same heat fluxes for gaps larger than 2 nm. Finally, we explain the saturation observed in a recent experiment as a manifestation of the skin depth and show that heat is mainly dissipated by eddy currents in metallic bodies.Comment: Version without figures (8 figures in the complete version

    Fungos endofíticos: perspectiva de descoberta e aplicação de compostos bioativos na agricultura.

    Get PDF
    bitstream/item/81780/1/Fungos-Endofiticos.pd

    The chemical rate equation for a magnetoactive plasma in reactive nonequilibrium

    No full text
    corecore